CNVtest.qt.T(CNVtools)
CNVtest.qt.T()所属R语言包:CNVtools
Fits a mixture of Gaussian to CNV data
适合混合高斯CNV的数据
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function fits a mixture of T distributions to Copy Number Variant data to explore potential correlations between the copy number and a
此功能适合的T分布的混合物复制数目变异数据之间的拷贝数和潜在的相关性探讨
用法----------Usage----------
CNVtest.qt.T(signal, batch, sample = NULL, qt = NULL, ncomp, n.H0=5, n.H1=0,
model.mean = '~ strata(cn)',
model.var = '~ strata(cn)',
model.qt = '~ cn',
beta.estimated = NULL,
start.mean = NULL,
start.var = NULL,
control=list(tol=1e-5, max.iter = 3000, min.freq=4) )
参数----------Arguments----------
参数:signal
The vector of intensity values, meant to be a proxy for the number of copies.
强度值向量,意味着,份数代理。
参数:batch
Factor, that describes how the data points should be separated in batches, corresponding to different tehnologies to measure the number of DNA copies, or maybe different cohorts in a case control framework.
因素,描述数据点应如何分批分离,对应到不同tehnologies DNA拷贝,或者不同世代的数量来衡量的情况下控制框架。
参数:sample
Optional (but recommended). A character vector containing a name for each data point, typically the name of the individuals.
可选(但建议)。一个特征向量包含一个名称为每个数据点,通常是个人的名字。
参数:qt
Quantitative trait values.
数量性状值。
参数:ncomp
Number of components one wants to fit to the data.
数的组成部分之一,要适合数据。
参数:n.H0
Number of times the EM should be used to maximize the likelihood under the null hypothesis of no association, each time with a different random starting point. The run that maximizes the likelihood is stored.
数倍的EM应最大限度地根据零假设的无关联的可能性,每次都用不同的随机起点。存储运行,最大限度地提高的可能性。
参数:n.H1
Number of times the EM should be used to maximize the likelihood under the alternate hypothesis of association present, each time with a different random starting point. The run that maximizes the likelihood is stored.
数倍的EM应最大限度地根据协会目前的替代假说的可能性,每次都用不同的随机起点。存储运行,最大限度地提高的可能性。
参数:model.mean
Formula that relates the location of the means for the clusters with the number of copies and the different batches if there are multiple batches. The default is “~ strata(cn)” that assumes a free model for the cluster locations for each copy number. For this T distribution model there is only one alternative: ” ~ strata(cn, batch)” assumes free variances for each combination of copy number and batch.
公式涉及的副本和不同批次的数量聚类的手段的位置,如果有多个批次。默认是“阶层(CN)”假定为每个拷贝数的聚类位置的免费模式。对于这件T分布模型只有一个选择:“~地层(CN,一批)”假定为每个拷贝数和批次的组合无差异。
参数:model.var
A formula as above, but to model the variances. The default is the free variance model for each copy number “~ strata(cn)”. There are three alternative variance models for this T distribution model: “~ strata(cn,batch)”, “~ strata(batch)” or even “ ~ 1” (constant variances for all batches and components).
上述的公式,但模型的差异。默认为每个拷贝数变异模型“~地层(CN)”。这件T分布模型的替代变异有三种模式:“~地层(CN,一批)”,“~~阶层(一批)”,甚至“~1”(常数方差为所有批次和组件)。
参数:model.qt
A formula that relates the number of copies with the case/control status. The default is a linear trend model “~ cn”. Note that this formula will only matter under the alternate hypothesis and has no effect under the null.
公式有关的情况/控制状态的份数。默认是一个线性趋势模型“CN”。注意:这个公式只有物质替代假设下,空下有没有效果。
参数:beta.estimated
Optional. It is used if one wants to fit the model for a particular value of the log odds parameter beta (essentially if one is interested in the profile likelihood). In this case the disease model should be set to ' ~ 1' and the model to 'H1'. It will then provide the best model assuming the value of beta (the log odds ratio parameter) provided by the user.
可选的。它是用来为特定值的log的赔率参数测试(基本上如果是在配置文件的可能性感兴趣),如果想以适应模型。疾病模型,在这种情况下,应设置“~1”和“上半年模型。然后,它会提供最好的模型,假设由用户提供的β值(log胜算比参数)。
参数:start.mean
Optional. A set of starting values for the means. Must be numeric and the size must match ncomp.
可选的。一套手段开始值。必须是数字的大小必须符合NCOMP的。
参数:start.var
Optional. A set of starting values for the variances. Must be numeric and the size must match ncomp.
可选的。一组值的差异开始。必须是数字的大小必须符合NCOMP的。
参数:control
A list of parameters that control the behavior of the fitting.
拟合的行为的参数控制列表。
值----------Value----------
参数:model.H0
The parameters for the best fit under H0.
H 0下的最适合的参数。
参数:posterior.H0
The output dataframe with the estimate posterior distribution under H0 as well as the most likely call.
估计后验分布在H 0,以及最有可能的呼叫的输出dataframe。
参数:status.H0
A character that describes the status of the fit under H0. The possible values are 'C' (converged), 'M' (maximum iterations reached), 'P' (posterior distribution problem). Fits that don't return 'C' should be excluded.
一个合适的状态下H 0的字符描述。可能的值是“C”(融合),“M”(达到最大迭代),“P”(后分配问题)。不返回“C”的一刀切,应排除在外。
参数:model.H1
The parameters for the best fit under H1.
下H1的最合适的参数。
参数:posterior.H1
The output dataframe with the estimate posterior distribution under H1
H1的后验分布的估计下的输出dataframe
参数:status.H1
A character that describes the status of the fit under H1. The possible values are 'C' (converged), 'M' (maximum iterations reached), 'P' (posterior distribution problem). Fits that don't return 'C' should be excluded.
字符描述下的H1合适的状态。可能的值是“C”(融合),“M”(达到最大迭代),“P”(后分配问题)。不返回“C”的一刀切,应排除在外。
作者(S)----------Author(s)----------
Vincent Plagnol <vincent.plagnol@cimr.cam.ac.uk> and Chris Barnes <christopher.barnes@imperial.ac.uk>
参见----------See Also----------
apply.pca
apply.pca
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|