summarizeFarmsExact3(cn.farms)
summarizeFarmsExact3()所属R语言包:cn.farms
Summarization Laplacian approach with exact computation
综述拉普拉斯算子的方法精确计算
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function implements an exact Laplace FARMS algorithm.
该功能实现一个确切的的拉普拉斯农场算法。
用法----------Usage----------
summarizeFarmsExact3(probes, mu = 1, weight = 100,
weightSignal = 1, weightZ = 30, weightProbes = TRUE,
updateSignal = FALSE, cyc = c(10, 10), tol = 1e-05,
weightType = "mean", centering = "median",
rescale = FALSE, backscaleComputation = FALSE,
maxIntensity = TRUE, refIdx, ...)
参数----------Arguments----------
参数:probes
A matrix with numeric values.
一个数值矩阵。
参数:mu
Hyperparameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most positions do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0 and it's recommended not to change it.
hyperparameter值可以量化潜在的先验知识的不同方面。接近零值假设大多数的职位不包含信号,并引入了装载接近零的矩阵元素的偏见。默认值是0,它建议不要去改变它。
参数:weight
Hyperparameter value which determines the influence of the Gaussian prior of the loadings
hyperparameter价值决定的负荷前高斯的影响
参数:weightSignal
Hyperparameter value on the signal.
hyperparameter价值的信号。
参数:weightZ
Hyperparameter value which determines how strong the Laplace prior of the factor should be at 0. Users should be aware, that a change of weightZ in comparison to the default parameter might also entail a need to change other parameters. Unexperienced users should not change weightZ.
这就决定了多么强大的拉普拉斯事先因素hyperparameter值应该为0。用户应该知道,比较默认参数变化的weightZ还可能引起其他参数需要改变。雏用户不应改变weightZ的。
参数:weightProbes
Parameter (TRUE/FALSE), that determines, if the number of probes should additionally be considered in weight. If TRUE, weight will be modified.
参数(TRUE / FALSE)的决定,如果探针的数量应另外考虑重量。如果是TRUE,重量将被修改。
参数:updateSignal
updateSignal.
updateSignal。
参数:cyc
Number of cycles. If the length is two, it is assumed, that a minimum and a maximum number of cycles is given. If the length is one, the value is interpreted as the exact number of cycles to be executed (minimum == maximum).
循环次数。如果长度是两个,这是假设,给出一个最小和最大循环数。如果长度,值被解释为要执行的周期的确切数量(最高最低==)。
参数:tol
States the termination tolerance if cyc[1]!=cyc[2]. Default is 0.00001.
国终止容忍如果CYC [1] = CYC [2]。默认为0.00001。
参数:weightType
Flag, that is used to summarize the probes of a sample.
标志,用来概括一个样本的探针。
参数:centering
States how the data should be centered ("mean", "median"). Default is median.
国的数据应如何为中心(“中庸”,“中位数”)。默认是中位数。
参数:rescale
Parameter (TRUE/FALSE), that determines, if moments in exact Laplace FARMS are rescaled in each iteration. Default is FALSE.
参数(TRUE / FALSE)的决定,如果在精确的拉普拉斯农场的时刻,在每一次迭代重新调整。默认为false。
参数:backscaleComputation
Parameter (TRUE/FALSE), that determines if the moments of hidden variables should be reestimated after rescaling the parameters.
参数(真/假),决定是否隐藏变量的时刻后,应重新调整的参数重新估计。
参数:maxIntensity
Parameter (TRUE/FALSE), that determines if the expectation value (=FALSE) or the maximum value (=TRUE) of p(z|x_i) should be used for an estimation of the hidden varaible.
参数(TRUE / FALSE)的决定,如果预期值(FALSE)或P(最大值= TRUE),(Z | x_i的)应为一个隐藏varaible估计。
参数:refIdx
index or indices which are used for computation of the centering
指数或指数是用来计算定心
参数:...
Further parameters for expert users.
专家用户的进一步参数。
值----------Value----------
A list including: the found parameters: lambda0, lambda1, Psi
发现的参数:lambda0,lambda1,PSI一个包括列表
the estimated factors: z (expectation), maxZ (maximum)
估计的因素:Z(期望),maxZ(最大)
p: log-likelihood of the data given the found lambda0, lambda1, Psi (not the posterior likelihood that is optimized)
检测号码:鉴于发现lambda0 lambda1,PSI(不进行优化后的可能性)的数据对数似然
varzx: variances of the hidden variables given the data
varzx:隐变量的差异给出的数据
KL: Kullback Leibler divergences between between posterior and prior distribution of the hidden variables
吉隆坡:介于后,事先隐藏变量的分布的Kullback Leibler距离分歧
IC: Information Content considering the hidden variables and data
集成电路:信息的内容,考虑到隐藏的变量和数据
ICtransform: transformed Information Content
ICtransform:转化的信息内容
Case: Case for computation of a sample point (non-exception, special exception)
案例:案例计算的采样点(非例外,特殊的例外)
L1median: Median of the lambda vector components
l1median:中位数的lambda向量组件
intensity: back-computed summarized probeset values with mean correction
强度:返回计算总结了平均矫正probeset值,
L_z: back-computed summarized probeset values without mean correction
l_z:返回计算的总结没有probeset值平均矫正
rawCN: transformed values of L_z
rawCN:L_z的转换值
SNR: some additional signal to noise ratio value
信噪比:一些额外的信号信噪比值
作者(S)----------Author(s)----------
Andreas Mayr <a href="mailto:mayr@bioinf.jku.at">mayr@bioinf.jku.at</a> and Djork-Arne
Clevert <a href="mailto kko@clevert.de">okko@clevert.de</a> and Andreas Mitterecker
<a href="mailto:mitterecker@bioinf.jku.at">mitterecker@bioinf.jku.at</a>
举例----------Examples----------
x <- matrix(rnorm(100, 11), 20, 5)
summarizeFarmsExact(x)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|