pls_lrCMA-methods(CMA)
pls_lrCMA-methods()所属R语言包:CMA
Partial Least Squares followed by logistic regression
偏最小二乘logistic回归之后的平方
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This method constructs a classifier that extracts Partial Least Squares components that form the the covariates in a binary logistic regression model. The Partial Least Squares components are computed by the package plsgenomics.
这种方法构造一个分类,提取偏最小二乘形成的协变量在Logistic回归模型的组件。偏最小二乘最小二乘组件包plsgenomics计算。
方法----------Methods----------
X = "matrix", y = "numeric", f = "missing" signature 1
=“矩阵”,Y =“数字”,F =“失踪”的签名1
X = "matrix", y = "factor", f = "missing" signature 2
=“矩阵”,Y =“因素”,F =“失踪”的签名2
X = "data.frame", y = "missing", f = "formula" signature 3
=“数据框”,Y =“失踪”,F =“公式”签名3
X = "ExpressionSet", y = "character", f = "missing" signature 4
=“ExpressionSet”,Y =“字符”=“失踪”的签名4
For further argument and output information, consult pls_lrCMA
为进一步论证和输出信息,咨询pls_lrCMA
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|