pls_ldaCMA(CMA)
pls_ldaCMA()所属R语言包:CMA
Partial Least Squares combined with Linear Discriminant Analysis
偏最小二乘与线性判别分析相结合
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This method constructs a classifier that extracts Partial Least Squares components that are plugged into Linear Discriminant Analysis. The Partial Least Squares components are computed by the package plsgenomics.
这种方法构造一个分类,提取偏最小二乘组件插入线性判别分析。偏最小二乘最小二乘组件包plsgenomics计算。
For S4 method information, see pls_ldaCMA-methods.
S4方法的详细信息,请参阅pls_ldaCMA-methods。
用法----------Usage----------
pls_ldaCMA(X, y, f, learnind, comp = 2, plot = FALSE,models=FALSE)
参数----------Arguments----------
参数:X
Gene expression data. Can be one of the following:
基因表达数据。可以是下列之一:
A matrix. Rows correspond to observations, columns to variables.
Amatrix。行对应的观察,列变量。
A data.frame, when f is not missing (s. below).
一个data.frame时f不缺少(S.下面)。
An object of class ExpressionSet.
对象类ExpressionSet。
参数:y
Class labels. Can be one of the following:
类的标签。可以是下列之一:
A numeric vector.
一个numeric向量。
A factor.
Afactor。
A character if X is an ExpressionSet that specifies the phenotype variable.
一个如果character X是一个ExpressionSet指定的表型变量。
missing, if X is a data.frame and a proper formula f is provided.
missing,X是data.frame和适当的公式f提供。
WARNING: The class labels will be re-coded to range from 0 to K-1, where K is the total number of different classes in the learning set.
警告:类标签将被重新编码范围从0K-1,K是在学习集不同类别的总数。
参数:f
A two-sided formula, if X is a data.frame. The left part correspond to class labels, the right to variables.
一个双面的公式,如果X是data.frame。左边部分对应类的标签,对变量的权利。
参数:learnind
An index vector specifying the observations that belong to the learning set. May be missing; in that case, the learning set consists of all observations and predictions are made on the learning set.
索引向量指定属于学习集的意见。可能missing;在这种情况下,学习组学习集的所有意见和预测。
参数:comp
Number of Partial Least Squares components to extract. Default is 2 which can be suboptimal, depending on the particular dataset. Can be optimized using tune.
偏最小二乘组件提取的数目。默认值是2,它可以是最理想的,根据特定的数据集。可以优化使用tune。
参数:plot
If comp <= 2, should the classification space of the Partial Least Squares components be plotted ? Default is FALSE.
如果comp <= 2,应绘制偏最小二乘最小二乘组件的分类空间?默认FALSE。
参数:models
a logical value indicating whether the model object shall be returned
一个逻辑值,该值指示是否应归还模型对象
值----------Value----------
An object of class cloutput.
对象类cloutput。
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>
Anne-Laure Boulesteix <a href="mailto:boulesteix@ibe.med.uni-muenchen.de">boulesteix@ibe.med.uni-muenchen.de</a>
参考文献----------References----------
参见----------See Also----------
compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA,
compBoostCMA,dldaCMA,ElasticNetCMA,fdaCMA,flexdaCMA,gbmCMA,knnCMA,ldaCMA,LassoCMA,nnetCMA,pknnCMA,plrCMA,pls_ldaCMA,pls_lrCMA,pls_rfCMA,pnnCMA,qdaCMA ,rfCMA
举例----------Examples----------
### load Khan data[##负载汗数据]
data(khan)
### extract class labels[#提取类标签]
khanY <- khan[,1]
### extract gene expression[#提取的基因表达]
khanX <- as.matrix(khan[,-1])
### select learningset[#选择learningset]
set.seed(111)
learnind <- sample(length(khanY), size=floor(2/3*length(khanY)))
### run Shrunken Centroids classfier, without tuning[#运行萎缩的重心classfier,无需调整]
plsresult <- pls_ldaCMA(X=khanX, y=khanY, learnind=learnind, comp = 4)
### show results[#显示结果]
show(plsresult)
ftable(plsresult)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|