chromosomePlots(Clonality)
chromosomePlots()所属R语言包:Clonality
Per-chromosome plots of the copy number arrays from a particular patient
每个染色体的拷贝数阵列从一个特定的病人图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The function produces a sequence of plots for each chromosome with one-step segmented data of all samples of a particular patient.
函数产生特定病人的所有样品一步分段数据序列的每个染色体的图。
用法----------Usage----------
chromosomePlots(data.seg1, ptlist, ptname,nmad)
参数----------Arguments----------
参数:data.seg1
Output of one-step segmentation - output OneStepSeg of clonality.analysis().
一步分割 - 的输出OneStepSeg的clonality.analysis()的输出。
参数:ptlist
Vector of the patient IDs in the order of the samples appearing in the data. For example, if the first three tumors belong to patient A, and the following two belong to patient B, then ptlist=c('ptA', 'ptA', 'ptA', 'ptB', 'ptB').
病人在出现在数据样本的顺序标识的向量。例如,如果前三肿瘤病人属于A和以下两个属于患者B,然后ptlist = C(“PTA”,“角”,“角”,“肺结核”,“肺结核”)。
参数:ptname
Name of the patient from ptlist for which the data should be plotted
病人的名字从的ptlist的数据应绘制
参数:nmad
Number of MADs (median absolute deviations) that is used for Gain/Loss calls. Used to mark the Gain/Loss threshold on the plots.
数量(平均绝对偏差)的MADS收益/损失呼叫。用来标记的增益/损耗阈值的图。
Details
详情----------Details----------
The function produces a sequence of plots for each chromosome with one-step segmented data of all samples of a particular patient. The dotted horizontal lines denote the gain and loss thresholds.
函数产生特定病人的所有样品一步分段数据序列的每个染色体的图。虚线的水平线表示阈值的得与失。
举例----------Examples----------
# Same example as in clonality.analysis()[相同的例子如在clonality.analysis()]
#Analysis of paired breast samples from study[从学习配对的乳腺癌样本分析]
#Hwang ES, Nyante SF, Chen YY, Moore D, DeVries S, Korkola JE, Esserman LJ, and Waldman FM. [黄禹锡胚胎干,Nyante科幻,陈宜瑜,摩尔DeVries医师小号,Korkola乙脑,埃瑟曼LJ,瓦尔德曼调频。]
#Clonality of lobular carcinoma in situ and synchronous invasive lobular cancer. Cancer 100(12):2562-72, 2004.[小叶癌在原位和同步的浸润性小叶癌的克隆。癌症100(12):2562-72,2004。]
#library(gdata) #needed to read .xls files[库(GDATA)的需要读取xls文件]
#library(DNAcopy) [库(DNAcopy)]
#arrayinfo<-read.xls("http://waldman.ucsf.edu/Colon/nakao.data.xls") #needed to extract genomic locations[arrayinfo <read.xls(“http://waldman.ucsf.edu/Colon/nakao.data.xls)#需要提取基因组的位置]
#data<-read.xls("http://waldman.ucsf.edu/Breast/Hwang.data.xls")[<read.xls(“http://waldman.ucsf.edu/Breast/Hwang.data.xls”)的数据]
#data<-data[!is.na(data[,2]),][数据<数据!is.na(数据[2])]]
#data<-data[apply(is.na(data),1,sum)<=50,][数据<数据应用(is.na(数据),1,总和)<= 50]]
#data<-data[,apply(is.na(data),2,sum)<=1000][数据<数据,适用于(is.na(数据),2,总和)<= 1000]]
#data$Position<-arrayinfo$Mb[match(toupper(as.character(data[,1])),toupper(as.character(arrayinfo[,1])))][]
#data<-data[!is.na(data$Position),][数据<数据!is.na(数据位置)]]
#dim(data)[昏暗的(数据)]
#length(unique(paste(data$Chromosome, data$Position))) #there are repeated genomic locations[长度(独特(膏(数据$染色体,数据元的位置)))#有重复的基因位置]
#data<-data[c(TRUE,data$Position[-1]!=data$Position[-1864]),] #discard probes with repeated genomic locations[数据<数据[C(TRUE时,数据元的位置[-1] =数据元的位置[-1864]),#丢弃重复的基因组位置的探针]
#data<-data[data$Chromosome<=22,] #getting rid of X and Y chromosomes[数据<数据[数据$染色体<= 22,]#X和Y染色体]
#dataCNA<-CNA(as.matrix(data[,c(4:6,28:30)]),maploc=data$Position,chrom=data$Chromosome,sampleid=names(data)[c(4:6,28:30)]) #taking the first 3 patients only to shorten the computation time; use c(4:51) for the full dataset[#采取的第3例患者,不仅缩短了计算时间;完整的数据集使用C(4:51)]
#dataCNA$maploc<-dataCNA$maploc*1000 #transforming maploc to Kb scale[dataCNA美元maploc <-dataCNA $ maploc * 1000#转化maploc KB规模]
#dataCNA$chrom<- splitChromosomes( dataCNA$chrom,dataCNA$maploc) #splits the chromosomes into arms[dataCNA美元CHROM < - splitChromosomes(dataCNA元铬,dataCNA美元maploc)#分割成武器的染色体]
#ptlist<-substr(names(dataCNA)[-c(1,2)],1,4)[ptlist <SUBSTR(名称(dataCNA)-C(1,2)],1,4)]
#samnms<-names(dataCNA)[-c(1,2)][samnms <名称(dataCNA)-C(1,2)]]
#results<-clonality.analysis(dataCNA, ptlist, pfreq = NULL, refdata = NULL, nmad = 1.25, [结果<clonality.analysis(dataCNA,ptlist,pfreq = NULL,refdata = NULL,nmad = 1.25,]
# reference = TRUE, allpairs = FALSE)[参考= TRUE allpairs = FALSE)]
#genomewide plots of pairs of tumors from the same patient[从同一病人对肿瘤的基因组图]
#pdf("genomewideplots.pdf",height=7,width=11)[PDF(的“genomewideplots.pdf”,高度= 7,宽度= 11)]
#for (i in unique(ptlist))[(独特的我(ptlist))]
#{[{]
#w<-which(ptlist==i) [W <(ptlist ==我)]
#ns<- length(w)[NS < - 长度(W)]
#if (ns>1)[(NS> 1)]
#{[{]
#for (p1 in c(1 ns-1)))[(P1(1:在C(NS-1)))]
#for (p2 in c((p1+1):ns))[(P2在C((P1 +1):NS))]
#genomewidePlots(results$OneStepSeg, results$ChromClass,ptlist , ptpair=samnms[c(w[p1],w[p2])],results$LR, plot.as.in.analysis = TRUE) [的genomewidePlots(结果为OneStepSeg,结果ChromClass,ptlist,ptpair = samnms [C(W [P1],W [P2])],结果为LR的,plot.as.in.analysis = TRUE时)]
#}[}]
#}[}]
#dev.off()[dev.off()]
#pdf("hist.pdf",height=7,width=11)[PDF(的“hist.pdf”,高度= 7,宽度= 11)]
#histogramPlot(results$LR[,4], results$refLR[,4])[histogramPlot(结果为LR的[4],结果美元refLR [4])]
#dev.off()[dev.off()]
#for (i in unique(ptlist))[(独特的我(ptlist))]
#{[{]
#pdf(paste("pt",i,".pdf",sep=""),height=7,width=11)[(粘贴(“PT”,“PDF”,SEP =“”),高度= 7,宽度= 11)]
#chromosomePlots(results$OneStepSeg, ptlist,ptname=i,nmad=1.25)[chromosomePlots(结果为OneStepSeg,ptlist,ptname =我,nmad = 1.25)]
#dev.off()[dev.off()]
#}[}]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|