找回密码
 注册
查看: 1273|回复: 0

R语言 zipfR包 spc.interp()函数中文帮助文档(中英文对照)

  [复制链接]
发表于 2012-10-2 07:50:07 | 显示全部楼层 |阅读模式
spc.interp(zipfR)
spc.interp()所属R语言包:zipfR

                                        Expected Frequency Spectrum by Binomial Interpolation (zipfR)
                                         预计频谱的二项式插值(zipfR)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

spc.interp computes the expected frequency spectrum for a random sample of specified size N, taken from a data set described by the frequency spectrum object obj.
spc.interp为指定大小的随机样本计算预期的频谱N,从数据集的频谱对象obj。


用法----------Usage----------



  spc.interp(obj, N, m.max=max(obj$m), allow.extrapolation=FALSE)




参数----------Arguments----------

参数:obj
an object of class spc, representing the frequency spectrum of the data set from which samples are taken
类的一个对象spc,表示频谱的数据集从该样品被


参数:N
a single non-negative integer specifying the sample size for which the expected frequency spectrum is calculated
预期频谱计算的样本大小为一个单一的非负整数,指定


参数:m.max
number of spectrum elements listed in the expected frequency spectrum.  By default, as many spectrum elements are included as the spectrum obj contains, since the expectations of higher spectrum elements will always be 0 in the binomial interpolation.  See note in section "Details" below.  
中列出的预期频谱的频谱元素数目。默认情况下,许多频谱元素的频谱obj,因为包含的期望更高的频谱元素将始终为0的二项插值。见注节下面的“详细信息”。


参数:allow.extrapolation
if TRUE, the requested sample size N may be larger than the sample size of the frequency spectrum obj, for binomial extrapolation.  This obtion should be used with great caution (see EVm.spc for details).
如果TRUE,所要求的样本量N可能是大于样本量的频谱obj,二项式推断。这obtion使用时应十分谨慎(见EVm.spc详情)。


Details

详细信息----------Details----------

See the EVm.spc manpage for more information, especially concerning binomial extrapolation.
参考EVm.spc的用户手册以获取更多的信息,特别是关于二项式推断的。

For large frequency spectra, the default value of m.max may lead to very long computation times.  It is therefore recommended to specify m.max explicitly and calculate only as many spectrum elements as are actually required.
对于大型的频谱,m.max的默认值可能会导致很长的计算时间。因此,建议到指定m.max明确,只计算许多频谱元素的实际需要。


值----------Value----------

An object of class spc, representing the expected frequency spectrum for a random sample of size N taken from the data set that is described by obj.
类的一个对象spc,预期频谱随机抽样的大小N的数据集所描述的obj。


参见----------See Also----------

spc for more information about frequency spectra and links to relevant functions
spc的频谱,并链接到相关的功能的更多信息,

The implementation of spc.interp is based on the functions EV.spc and EVm.spc.  See the respective manpages for technical details.
执行spc.interp是基于上的功能EV.spc和EVm.spc。技术细节,请参阅相应的联机帮助页。

vgc.interp computes expected vocabulary growth curves by binomial interpolation from a frequency spectrum
vgc.interp二项式内插频谱计算预期的词汇增长曲线

sample.spc takes a single concrete random subsample from a spectrum and returns the spectrum of the subsample, unlike spc.interp, that computes the expected frequency spectrum for random subsamples of size N by binomial interpolation.
sample.spc从频谱的一个具体的随机子样本和返回的频谱的子样本,,不像spc.interp,计算预期的频谱的随机子样本大小N二项式插值。


实例----------Examples----------



## load the Tiger NP expansion spectrum[#加载虎的NP扩展频谱]
## (sample size: about 109k tokens) [#(样本大小:109K令牌)]
data(TigerNP.spc)

## interpolated expected frequency subspectrum of 50k tokens[#插值预期的频率带子频谱50K的标记]
TigerNP.sub.spc <- spc.interp(TigerNP.spc,5e+4)
summary(TigerNP.sub.spc)

## previous is slow since it calculates all expected  spectrum[#以前的很慢,因为它计算所有预期的频谱]
## elements; suppose we only need the first 10 expected[#元素;假设我们只需要在第一个10年预期]
## spectrum element frequencies; then we can do:[#分光元件的频率,然后我们可以做的:]
TigerNP.sub.spc &lt;- spc.interp(TigerNP.spc,5e+4,m.max=10) # much faster![更快!]
summary(TigerNP.sub.spc)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-23 23:17 , Processed in 0.032417 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表