找回密码
 注册
查看: 1025|回复: 0

R语言 zipfR包 LNRE()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-2 07:48:05 | 显示全部楼层 |阅读模式
LNRE(zipfR)
LNRE()所属R语言包:zipfR

                                        Type and Probability Distributions of LNRE Models (zipfR)
                                         类型和概率分布的LNRE模型(zipfR)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Type density g (tdlnre), type distribution G (tplnre), type quantiles G^{-1} (tqlnre), probability density f (dlnre), distribution function F (plnre), quantile function F^{-1} (qlnre), logarithmic type and probability densities (ltdlnre and ldlnre), and random sample generation (rlnre) for LNRE models.
类型密度g(tdlnre),类型,分布G(tplnre),类型位数G^{-1}(tqlnre),概率密度<X >(f),分布函数dlnre(F),分位数函数plnre(F^{-1}),对数型和概率密度(qlnre 和ltdlnre),并随机抽样代(ldlnre)LNRE模型。


用法----------Usage----------



  tdlnre(model, x, ...)
  tplnre(model, q, lower.tail=FALSE, ...)
  tqlnre(model, p, lower.tail=FALSE, ...)

  dlnre(model, x, ...)
  plnre(model, q, lower.tail=TRUE, ...)
  qlnre(model, p, lower.tail=TRUE, ...)

  ltdlnre(model, x, base=10, log.x=FALSE, ...)
  ldlnre(model, x, base=10, log.x=FALSE, ...)

  rlnre(model, n, ...)




参数----------Arguments----------

参数:model
an object belonging to a subclass of lnre, representing a LNRE model
一个对象的一个子类的lnre,较LNRE模型


参数:x
vector of type probabilities pi for which the density function is evaluated
向量类型的概率pi的密度函数进行求值


参数:q
vector of type probability quantiles, i.e. threshold values &rho; on the type probability axis
向量的类型概率位数,即阈值&rho;类型的概率轴


参数:p
vector of tail probabilities
矢量尾概率


参数:lower.tail
if TRUE, lower tail probabilities or type counts are returned / expected in the p argument.  Note that the defaults differ for distribution function and type distribution, and see "Details" below.
如果返回TRUE,下尾概率或类型计数/预期p参数。注意:默认值分布函数和类型分布不同,见下面的“详细信息”。


参数:base
positive number, the base with respect to which the log-transformation is peformed (see "Details" below)
正数,该碱基的log转型灌胃(见下面的“详细信息”)


参数:log.x
if TRUE, the values passed in the argument x are assumed to be logarithmic, i.e. \log_a &pi;
如果TRUE,在参数传递的值x被认为是对数,即\log_a &pi;


参数:n
size of random sample to generate.  If length(n) > 1, the length is taken to be the number required.
大小的随机抽样产生。如果length(n) > 1,长度所需的数量。


参数:...
further arguments are passed through to the method implementations (currently unused)
进一步的参数被传递到方法实现(目前未使用)


Details

详细信息----------Details----------

Note that the order in which arguments are specified differs from the analogous functions for common statistical distributions in the R standard library.  In particular, the LNRE model model always has to be given as the first parameter so that R can dispatch the function call to an appropriate method implementation for the chosen LNRE model.
需要注意的是指定参数的顺序不同于R标准库中常见的统计分布类似的功能。特别是,LNRE模型model总是有作为第一个参数被给出,因此,R可以调度的函数调用的所选择的LNRE模型的适当的方法实现。

Some of the functions may not be available for certain types of LNRE models.  In particular, no analytical solutions are known for the distribution and quantiles of GIGP models, so the functions tplnre, tqlnre, plnre, qlnre and rlnre (which depends on qlnre and tplnre) are not implemented for objects of class lnre.gigp.
的一些功能可能无法使用某些类型的LNRE模型。特别是,没有GIGP模型的分布和分位数的分析解决方案是已知的,这样的功能tplnre,tqlnre,plnre,qlnre和rlnre(这取决于qlnre和tplnre)不落实的对象类lnre.gigp。

The default tails differ for the distribution function (plnre, qlnre) and the type distribution (tplnre, tqlnre), in order to match the definitions of F(&rho;) and G(&rho;).  While the distribution function defaults to lower tails (lower.tail=TRUE, corresponding to F and F^{-1}), the type distribution defaults to upper tails (lower.tail=FALSE, corresponding to G and G^{-1}).
默认的尾巴的分布函数(plnre,qlnre)和类型分布(tplnre,tqlnre),以匹配的定义F(&rho;)不同和G(&rho;)。虽然分布函数默认为更低的尾巴(lower.tail=TRUE,相应的F和F^{-1}),类型分布,以上尾(lower.tail=FALSE,对应的G的默认和G^{-1}“)。

Unlike for standard distriutions, logarithmic tail probabilities (log.p=TRUE) are not provided for the LNRE models, since here the focus is usually on the bulk of the distribution rather than on the extreme tails.
与标准distriutions,数尾概率(log.p=TRUE)未作规定的模型的LNRE,因为这里的重点是通常在大量的分布,而不是极端的尾巴。

The log-transformed density functions f* and g* returned by ldlnre and ltdlnre, respectively, can be understood as probability and type densities for \log_a &pi; instead of &pi;, and are useful for visualization of LNRE populations (with a logarithmic scale for the parameter &pi; on the x-axis).  For example,
数转换的密度函数f*g*返回ldlnre和ltdlnre,分别可以理解为概率和类型,而不是密度\log_a &pi; &pi;,并且是有用的用于可视化LNRE种群(用对数标度参数&pi;在x-轴)。例如,


值----------Value----------

For rnlre, a factor of length n, representing a random sample from the population described by the specified LNRE model.
对于rnlre,长度n的一个因素,代表一个随机样本的人口所描述的指定的LNRE模型。

For all other functions, a vector of non-negative numbers of the same length as the second argument (x, p or q).
对于所有其他的功能,作为第二个参数(非负数的长度相同的向量x,p或q)。

tdlnre returns the type density g(&pi;) for the values of &pi; specified in the vector x.  tplnre returns the type distribution G(&rho;) (default) or its complement 1-G(&rho;) (if lower.tail=TRUE), for the values of &rho; specified in the vector q.  tqlnre returns type quantiles, i.e. the inverse G^{-1}(x) (default) or G^{-1}(S-x) (if lower.tail=TRUE) of the type distribution, for the type counts x specified in the vector p.
tdlnre向量g(&pi;)指定&pi;返回类型密度x的值。 tplnre如果返回的类型分布G(&rho;)(默认)或它的补1-G(&rho;)(lower.tail=TRUE),为的值&rho;中指定的矢量<X >。 q返回类型位数,即逆tqlnre(默认)或G^{-1}(x)(如果G^{-1}(S-x))的类型分布,类型计数lower.tail=TRUE中指定的向量x。

dlnre returns the probability density f(&pi;) for the values of &pi; specified in the vector x.  plnre returns the distribution function F(&rho;) (default) or its complement 1-F(&rho;) (if lower.tail=FALSE), for the values of &rho; specified in the vector q.  qlnre returns quantiles, i.e. the inverse F^{-1}(p) (default) or F^{-1}(1-p) (if lower.tail=FALSE) of the distribution function, for the probabilities p specified in the vector p.
dlnre返回概率密度f(&pi;)值&pi;指定的向量x的中。 plnre返回的分布函数F(&rho;)(默认)或它的补1-F(&rho;)(如果lower.tail=FALSE)的值,&rho;中指定的矢量<X >。 q返回位数,即逆qlnre(默认)或F^{-1}(p)(如果F^{-1}(1-p))的分布函数,为的概率lower.tail=FALSE中指定的矢量p。

ldlnre and ltdlnre compute logarithmically transformed versions of the probability and type density functions, respectively, taking logarithms with respect to the base a specified in the base argument (default: a=10).  See "Details" above for more information.
ldlnre和ltdlnre的概率和类型的密度函数计算对数变换的版本,分别取对数的基础abase参数(默认:指定 a=10“)。上述有关更多信息,请参阅“详细信息”。


参见----------See Also----------

lnre for more information about LNRE models and how to initialize them
lnre约LNRE模型的更多信息,以及如何初始化它们

random samples generated with rnlre can be further processed with the functions vec2tfl, vec2spc and vec2vgc
随机采样产生rnlre可进一步加工的功能vec2tfl,vec2spc和vec2vgc


实例----------Examples----------



## define ZM and fZM LNRE models [#ZM和FZM LNRE模型的定义。]
ZM <- lnre("zm", alpha=.8, B=1e-3)
FZM <- lnre("fzm", alpha=.8, A=1e-5, B=.05)

## random samples from the two models[#随机抽样,在两个模型]
head(table(rlnre(ZM, 10000)))
head(table(rlnre(FZM, 10000)))

## plot logarithmic type density functions[#图对数型密度函数]
x &lt;- 10^seq(-6, 1, by=.01)  # pi = 10^(-6) .. 10^(-1)[PI = 10 ^(-6) 10 ^(-1)]
y.zm <- ltdlnre(ZM, x)
y.fzm <- ltdlnre(FZM, x)
## Not run: plot(x, y.zm, type="l", lwd=2, col="red", log="x", ylim=c(0,14000))[#不运行:图(X,y.zm,类型=“L”,随钻测井= 2,列=“红色”,log=“X”,ylim = C(0,14000))]
## Not run: lines(x, y.fzm, lwd=2, col="blue")[#不运行线(X,y.fzm,随钻测井= 2,列=“蓝”)]
## Not run: legend("topright", legend=c("ZM", "fZM"), lwd=3, col=c("red", "blue"))[#不运行:传说(“topright”,传说= C(“ZM”,“FZM”的),随钻测井= 3,列= C(“红”,“蓝”))]

## probability pi_k of k-th type according to FZM model[根据FZM模型#概率pi_k的第k个类型]
k <- 10
plnre(FZM, tqlnre(FZM, k-1)) - plnre(FZM, tqlnre(FZM, k))

## number of types with pi &gt;= 1e-6[#类型PI> = 1E-6]
tplnre(ZM, 1e-6)

## lower tail fails for infinite population size[#低尾失败,无限的人口规模]
## Not run: tplnre(ZM, 1e-3, lower=TRUE)[#不运行:tplnre(ZM,1E-3,低= TRUE)]

## total probability mass assigned to types with pi &lt;= 1e-6[#分配的概率质量的类型与pi <= 1E-6]
plnre(ZM, 1e-6)
  

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-24 02:54 , Processed in 0.022566 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表