找回密码
 注册
查看: 723|回复: 0

R语言 yaImpute包 errorStats()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-2 07:29:55 | 显示全部楼层 |阅读模式
errorStats(yaImpute)
errorStats()所属R语言包:yaImpute

                                        Compute error components of k-NN imputations
                                         计算误差分量的K-NN的估算

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Error properties of estimates derived from imputation differ from those of regression-based estimates because the two methods include a different mix of error components. This function computes a partitioning of error statistics as proposed by Stage and Crookston (2007).
基于回归的估计错误的估计来自归集的不同,因为这两种方法的不同组合的误差分量。此函数计算阶段和克鲁克斯顿(2007)提出的一个分区的错误统计。


用法----------Usage----------


errorStats(mahal,...,scale=FALSE,pzero=0.1,plg=0.5,seeMethod="lm")



参数----------Arguments----------

参数:mahal
An object of class yai computed with method="mahalanobis".
一个类的对象yai计算method="mahalanobis"的。


参数:...
Other objects of class yai for which statistics are desired. All objects should be for the same data and variables used for the first argument.
其他类的对象yai的统计需要。所有的对象应该是第一个参数为使用相同的数据和变量。


参数:scale
When TRUE, the errors are scaled by their respective standard deviations.
当TRUE,错误的比例由各自的标准偏差。


参数:pzero
The lower tail p-value used to pick reference observations that are zero distance from each other (used to compute rmmsd0).
下尾用来接参考观测零距离彼此(用于计算rmmsd0)p-值。


参数:plg
The upper tail p-value used to pick reference observations that are substantially distant from each other (used to compute rmsdlg).
上部尾巴用来挑选彼此基本上是遥远的参考观测(用于计算rmsdlg)p-值。


参数:seeMethod
Method used to compute SEE: seeMethod="lm" uses lm and seeMethod="gam" uses gam. In both cases, the model formula is a simple linear combination of the X-variables.
方法用于计算SEE:seeMethod="lm"使用lm和seeMethod="gam"使用gam,。在这两种情况下,模型公式中的X变量是一个简单的线性组合。


Details

详细信息----------Details----------

See http://www.fs.fed.us/rm/pubs_other/rmrs_2007_stage_a001.pdf
见http://www.fs.fed.us/rm/pubs_other/rmrs_2007_stage_a001.pdf


值----------Value----------

A list that contains several data frames. The column names of each are a combination of the name of the object used to compute the statistics and the name of the statistic. The rownames correspond the the Y-variables from the first argument. The data frame names are as follows:
一个列表,包含几个数据框。每个列名是用于计算的统计信息和统计信息的名称的对象的名称的组合。行名对应的Y-从第一个参数的变量。数据框的名字如下:


参数:common
statistics used to compute other statistics.
统计数据来计算其他统计资料。


参数:name of first argument
error statistics for the first yai object.
错误统计的的第一个yai对象。


参数:names of ... arguments
error statistics for each of the remaining yai objects, if any.
错误为每个其它yai对象的统计信息,如果有的话。


参数:see
standard error of estimate for individual regressions fit for corresponding Y-variables.
适合个人回归估计标准误差对应的Y变量。


参数:rmmsd0
root mean square difference for imputations based on method="mahalanobis" (always based on the first argument to the function).
均方根误差的估算基础上method="mahalanobis"(总是基于该函数的第一个参数)。


参数:mlf
square root of the model lack of fit: sqrt(see^2 - (rmmsd0^2/2)).
平方根缺乏合适的模型:sqrt(see^2 - (rmmsd0^2/2))。


参数:rmsd
root mean square error.
均方根误差。


参数:rmsdlg
root mean square error of the observations with larger distances.
均方根误差的意见有较大的距离。


参数:sei
standard error of imputation sqrt(rmsd^2 - (rmmsd0^2/2)).
标准错误的归集sqrt(rmsd^2 - (rmmsd0^2/2))。


参数:dstc
distance component: sqrt(rmsd^2 - rmmsd0^2).
距离成分:sqrt(rmsd^2 - rmmsd0^2)。

Note that unlike Stage and Crookston (2007), all statistics reported here are in the natural units, not squared units.
需要注意的是,不同阶段和克鲁克斯顿(2007年),这里所有的统计报告是在自然单位,而不是平方单位。


(作者)----------Author(s)----------



Nicholas L. Crookston <a href="mailto:ncrookston.fs@gmail.com">ncrookston.fs@gmail.com</a> <br>
Albert R. Stage <a href="mailto:astage@moscow.com">astage@moscow.com</a>




参考文献----------References----------

for accuracy-assessment of near neighbor methods of imputation. For. Sci. 53(1):62-72. http://forest.moscowfsl.wsu.edu/gems/StagePartitioningFS.pdf

参见----------See Also----------

yai, TallyLake
yai,TallyLake


实例----------Examples----------



require (yaImpute)

data(TallyLake)

diag(cov(TallyLake[,1:8])) # see col A in Table 3 in Stage and Crookston[COL A在表3中第一阶段和克鲁克斯顿]

mal=yai(x=TallyLake[,9:29],y=TallyLake[,1:8],ann=FALSE,
        noTrgs=TRUE,method="mahalanobis")


msn=yai(x=TallyLake[,9:29],y=TallyLake[,1:8],ann=FALSE,
        noTrgs=TRUE,method="msn")


# variable "see" for "mal" matches col B (when squared and scaled)[变量“看”为“正常”时,匹配山坳B(平方和缩放)]
# other columns don't match exactly as Stage and Crookston used different[其他列不完全匹配阶段,克鲁克斯顿使用不同的]
# software to compute values[软件计算值]

errorStats(mal,msn)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-24 09:52 , Processed in 0.022797 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表