csm(wild1)
csm()所属R语言包:wild1
Cause-specific estimates of mortality
死亡原因估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
An implementation of the nonparametric cumulative incidence function estimator described by Heisey and Patterson (2006). Permits staggered entry ("left truncation" in survival literature).
非参数累积发生率函数估计的实现描述的海西和Patterson(2006)。许可证交错项(“左截断”的生存文学)。
用法----------Usage----------
csm(entry, exit, event, fate, cause, alpha = 0.10)
参数----------Arguments----------
参数:entry
A data vector of class "numeric", integer, or "chron", representing times of entry for individuals in the risk set.
数据向量类"numeric",integer或"chron",表示时间的条目个人的风险集中。
参数:exit
A data vector of class "numeric", integer, or "chron", representing times of exit for individuals in the risk set.
数据向量类"numeric",integer或"chron",为个人的风险集中的退出表示时间。
参数:event
A data vector of class "numeric", integer, or "logical" describing departures of individuals from the risk set (0 or FALSE denotes censoring; 1 or TRUE denotes an event).
数据向量类"numeric",integer或"logical"描述个人的离开从风险组(0或FALSE表示审查,“1 或TRUE表示事件)。
参数:fate
A data vector of class "numeric", "character", or "factor" describing fates of individuals.
数据向量类"numeric","character"或"factor"描述个人的命运。
参数:cause
A vector of class "numeric", integer, or "character" specifying fates attributed to the cause of interest. For example, several fates [c("hunting","poaching","vehicle strike")] might be included in an estimate of anthropogenic mortality.
一个向量类"numeric",integer或"character"指定的命运归结为利益的原因。例如,一些命运[c("hunting","poaching","vehicle strike")可能人为死亡率的估计。
参数:alpha
Optional alpha level used to compute 100*(1-alpha/2)% upper and lower bounds (a 100*(1-alpha)% confidence interval) for the cumulative incidence function. Default is 0.10 (90% confidence interval).
可选的alpha水平来计算100 *(1-α/ 2)%的上限和下限(100 *(1-α)%置信区间)的累积发生率函数。默认值是0.10(90%置信区间)。
值----------Value----------
An object of classes "dataframe" and "csm".<br> <br> Columns include the following:<br> <br> <table summary="R valueblock"> <tr valign="top"><td> time </td> <td> Event time</td></tr> <tr valign="top"><td> n.event.all </td> <td> Number of events (all causes) occurring at time</td></tr> <tr valign="top"><td> n.risk.all </td> <td> Number of individuals at risk at time</td></tr> <tr valign="top"><td> survival.all </td> <td> Kaplan-Meier estimate of survival (all causes)</td></tr> <tr valign="top"><td> n.event.s </td> <td> Number of events due to fates in cause at time</td></tr> <tr valign="top"><td> n.risk.s </td> <td> Number of individuals at risk at time</td></tr> <tr valign="top"><td> survival.s </td> <td> Kaplan-Meier survival estimate obtained by censoring mortalities due to fates not in cause</td></tr> <tr valign="top"><td> mort.rate </td> <td> Interval mortality rate</td></tr> <tr valign="top"><td> CIF </td> <td> Cumulative incidence function estimate of mortality</td></tr> <tr valign="top"><td> cumvar </td> <td> Variance of CIF</td></tr> <tr valign="top"><td> SE </td> <td> Standard error of CIF</td></tr> <tr valign="top"><td> ucl </td> <td> Upper 100*(1-alpha)% confidence limit for CIF</td></tr> <tr valign="top"><td> lcl </td> <td> Lower 100*(1-alpha)% confidence limit for CIF</td></tr> </table>
对象的类"dataframe"和"csm"。的参考<BR>列包括以下内容:<BR> <BR> <table summary="R valueblock"> <tr valign="top"> <TD> time </ TD> <TD>活动时间</ TD> </ TR> <tr valign="top"> <TD> n.event.all </ TD> <TD>数事件(各种原因)发生在time</ TD> </ TR> <tr valign="top"> <TD> n.risk.all </ TD> <TD>的高危人群 time</ TD> </ TR> <tr valign="top"> <TD> survival.all </ TD> <TD> Kaplan-Meier法估计生存(所有原因)</ TD> < / TR> <tr valign="top"> <TD> n.event.s </ TD> <TD>的事件,由于命运causetime</ TD> </ TR> <tr valign="top"> <TD> n.risk.s </ TD> <TD>的个人风险time</ TD> </ TR> <TR VALIGN =“顶“> <TD> survival.s </ TD> <TD> Kaplan-Meier生存估计通过审查死亡率由于命运并不在cause </ TD> </ TR> <TR VALIGN =”顶部“> <TD> mort.rate </ TD> <TD>间隔死亡率</ TD> </ TR> <tr valign="top"> <TD> CIF </ TD> <TD >累积发生率函数估计的死亡率</ TD> </ TR> <tr valign="top"> <TD> cumvar </ TD> <TD>方差CIF </ TD> < / TR> <tr valign="top"> <TD> SE </ TD> <TD>的标准误差CIF</ TD> </ TR> <tr valign="top"> <TD> ucl </ TD> <TD>上100 *(1-α)%可信限为CIF </ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>下100 *(1-α)%置信区间为CIF </ TD> </ TR> </ TABLE>
注意----------Note----------
Modified from SPLUS code provided by Heisey and Patterson (2006) to 1) run in R, 2) permit more flexible input, 3) check data for a number of foreseeable errors, 4) support grouping of fates as a single cause, and 5) facilitate operations with output.
修改从海西和Patterson(2006):1)在R,2)S-PLUS提供的代码允许更灵活的输入,3)检查数据的一些可预见的错误,4)支持分组的命运,作为一个单一的原因,的输出),便于操作。
Intervals defined by entry and exit are open on the left and closed on the right, i.e., event time is given by exit and interval is (entry, exit].
给出了entry和间隔是exit,exit和(entry, exit]是离开的权利,即关闭事件时间定义区间。
(作者)----------Author(s)----------
Glen A. Sargeant<br>
U.S. Geological Survey<br>
Northern Prairie Wildlife Research Center<br>
<a href="mailto:glen_sargeant@usgs.gov">glen_sargeant@usgs.gov</a>
参考文献----------References----------
Heisey, D. M., and B. R. Patterson. 2006. A review of methods to estimate cause-specific mortality in presence of competing risks. Journal of Wildlife Management 70(6):1544-1555
参见----------See Also----------
chron
chron
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|