找回密码
 注册
查看: 708|回复: 0

R语言 wavethresh包 wst2D()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 20:23:34 | 显示全部楼层 |阅读模式
wst2D(wavethresh)
wst2D()所属R语言包:wavethresh

                                        (Packet-ordered) 2D non-decimated wavelet transform.
                                         (分组排序)二维非抽取小波变换。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function computes the (packet-ordered) 2D non-decimated wavelet transform
此函数计算(分组有序的)2D的非抽取小波变换


用法----------Usage----------


wst2D(m, filter.number=10, family="DaubLeAsymm")



参数----------Arguments----------

参数:m
A matrix containing the image data that you wish to decompose. Each dimension of the matrix must be the same power of 2.
一个矩阵包含你想分解的图像数据。每个维度的矩阵必须是相同的2的幂。


参数:filter.number
This selects the smoothness of wavelet that you want to use in the decomposition. By default this is 10, the Daubechies least-asymmetric orthonormal compactly supported wavelet with 10 vanishing moments.
选择要使用的分解小波的平滑度。默认情况下,这是10,至少不对称的Daubechies正交的紧支撑小波与10个消失矩。


参数:family
specifies the family of wavelets that you want to use. Two popular options are "DaubExPhase" and "DaubLeAsymm" but see the help for filter.select for more possibilities.
指定要使用的小波家庭。两个流行的选择是“DaubExPhase”和“DaubLeAsymm的”,但的帮助filter.select更多的可能性。


Details

详细信息----------Details----------

The wst2D computes the (packet-ordered) 2D non-decimated discrete wavelet transform. Such a transform may be used in wavelet shrinkage of images using the AvBasis.wst2D function to perform an "average-basis" inverse. Such a transform was used to denoise images in the paper by Lang, Guo, Odegard, Burrus and Wells, 1995.
wst2D计算(包有序的)的二维非锐减离散小波变换。这样的变换也可以使用在使用AvBasis.wst2D函数的图像执行一个“平均的基础”逆小波收缩。这样的变换郎,郭,奥德加德,比吕斯和韦尔斯,1995年被用来去噪图像的文件。

The algorithm works by mixing the HH, GH, HG and GG image operators of the 2D (decimated) discrete wavelet transform (see Mallat, 1989 and the implementation in WaveThresh called imwd) with the shift operator S (as documented in Nason and Silverman, 1995) to form new operators (as given in the help to getpacket.wst2D).
该算法的工作原理是混合的HH,GH,HG和GG图像运营商的2D(抽取)离散小波变换(见Mallat的,1989年和实施在WaveThresh称为imwd)与换档操作S(如记录在利晨和Silverman,1995),形成新的运营商(如给定的的帮助getpacket.wst2D)。

Subimages can be obtained and replaced using the getpacket.wst2D and putpacket.wst2D functions.
子图像可以更换的,使用getpacket.wst2D和putpacket.wst2D函数。

This function is a 2D analogue of the (packet-ordered) non-decimated discrete wavelet transform implemented in WaveThresh as wst.
这个函数是一个二维模拟(包有序的)非锐减在WaveThresh实施离散小波变换为wst。


值----------Value----------

An object of class wst2D.
对象的类wst2D。


RELEASE----------RELEASE----------

Version 3.9.5 Copyright Guy Nason 1998
版本3.9.5版权所有1998年盖利晨


(作者)----------Author(s)----------


G P Nason



参见----------See Also----------

AvBasis.wst2D, getpacket.wst2D, imwd, plot.wst2D, print.wst2D, putpacket.wst2D, summary.wst2D, wst2D.object.
AvBasis.wst2D,getpacket.wst2D,imwd,plot.wst2D,print.wst2D,putpacket.wst2D,summary.wst2D,wst2D.object。


实例----------Examples----------


#[]
# We shall use the lennon image.[我们将使用列侬的图像。]
#[]
data(lennon)
#[]
#[]
# Now let's apply the (packet-ordered) 2D non-decimated DWT to it...[现在,让我们的申请(包有序)二维非锐减DWT ...]
# (using the default wavelets)[(使用默认小波)]
#[]
uawst2D <- wst2D(lennon)
#[]
# One can use the function plot.wst2D to get[一个可以使用的函数plot.wst2D得到]
# a picture of all the resolution levels. However, let's just look at them[所有分辨率级别的图片。然而,让我们看他们]
# one at a time.[一次一个。]
#[]
# How many levels does our uawst2D object have? [如何许多水平我们uawst2D的对象有哪些?]
#[]
nlevels(uawst2D)
#[1] 8[[1] 8]
#[]
# O.k. Let's look at resolution level 7[好吧。让我们来看看分辨率为7级]
#[]
## Not run: image(uawst2D$wst2D[8,,])[#不运行:(uawst2D $ wst2D [8])]
#[]
#[]
# There are four main blocks here (each of 256x256 pixels) which themselves[有四个主要区块(256x256像素),这本身]
# contain four sub-blocks. The primary blocks correspond to the no shift,[包含四个子块。的主要的块对应于没有移位,]
# horizontal shift, vertical shift and "horizontal and vertical" shifts[水平移位,垂直移位和“水平和垂直的”移]
# generated by the shift S operator. Within each of the 256x256 blocks[所产生的移位s运算符。在每一个256x256的块]
# we have the "usual" Mallat smooth, horizontal, vertical and diagonal[我们有“通常”的Mallat光滑,水平,垂直和对角线]
# detail, with the smooth in the top left of each block.[详细地说,在每个块的左上方的顺利。]
#[]
# Let's extract the smooth, with no shifts at level 7 and display it[让我们提取的顺利,在7级没有变化,显示]
#[]
## Not run: image(getpacket(uawst2D, level=7, index=0, type="S"))[#不执行:图像(getpacket(uawst2D,级别= 7,索引= 0,类型=“S”))]
#[]
#[]
# Now if we go two more resolution levels deeper we have now 64x64 blocks[现在,如果我们去两个多分辨率层次更深的,我们现在的64×64块]
# which contain 32x32 subblocks corresponding to the smooth, horizontal,[其中包含32×32的子块对应的平滑,水平,]
# vertical and diagonal detail. [垂直和对角线细节。]
#[]
#[]
# Groovy eh?[Groovy的不是吗?]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 15:00 , Processed in 0.033602 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表