找回密码
 注册
查看: 471|回复: 0

R语言 wavethresh包 wd.object()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 20:17:20 | 显示全部楼层 |阅读模式
wd.object(wavethresh)
wd.object()所属R语言包:wavethresh

                                        Wavelet decomposition objects
                                         小波分解对象

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

These are objects of classes
这些类的对象

wd
wd

They represent a decomposition of a function with respect to a wavelet basis (or tight frame in the case of the (time-ordered) non-decimated wavelet decomposition).
它们代表了一个相对于一个小波的基础上(或紧框架的情况下,分解一个函数(时间序)非抽取小波分解)。


Details

详细信息----------Details----------

To retain your sanity the C and D coefficients should be extracted by the accessC and accessD functions and inserted using the putC and putD functions (or more likely, their methods), rather than by the $ operator.
要保持你的理智C和D系数应提取的accessC和accessD功能和插入putC和putD函数(或者更可能的,他们的方法) ,而非由$操作员。

Mind you, if you want to muck about with coefficients directly, then you'll have to do it yourself by working out what the fl.dbase list means (see first.last for a description.)
提醒你,如果你想系数直接淤泥,然后你必须做自己的工作的fl.dbase名单意味着什么(见first.last的说明。)

Note the time-ordered non-decimated wavelet transform used to be called the stationary wavelet transform. In fact, the non-decimated transform has several possible names and has been reinvented many times. There are two versions of the non-decimated transform: the coefficients are the same in each version just ordered differently within a resolution level. The two transforms are
请注意时间排序的非抽取小波变换被称为平稳小波变换。事实上,非抽取的变换有几个可能的名字,并已被彻底改造多次。有两个版本的非锐减变换的:在每个版本中刚刚订购了不同分辨率级别内的系数是相同的。这两个转换




The function wd() with an argument type="station" computes the time-ordered non-decimated transform (see Nason and Silverman, 1995) which is useful in time-series applications (see e.g. Nason, von Sachs and Kroisandt, 1998).
函数wd()参数type="station"计算时间排序的非锐减变换(见利晨和Silverman,1995年),是有用的,在时间序列的应用程序(例如,见利晨,冯高盛和kroisandt,1998)。

The function wst() computes the packets ordered non-decimated transform is useful for curve estimation type applications (see e.g. Coifman and Donoho, 1995).  </ul>
该功能wst()计算的报文下令非抽取变换曲线估计的类型的应用程序(见例如Coifman和Donoho提出,1995年)是有用的。 </ ul>


值----------Value----------

The following components must be included in a legitimate "wd" object.
以下组件必须被包含在一个合法的“WD的对象。

<table summary="R valueblock"> <tr valign="top"><td>C</td> <td> a vector containing each level's smoothed data. The wavelet transform works by applying both a smoothing filter and a bandpass filter to the previous level's smoothed data. The top level contains data at the highest resolution level. Each of these levels are stored one after the other in this vector. The matrix
<table summary="R valueblock"> <tr valign="top"> <TD>C</ TD> <td>一个向量,每个级别的平滑后的数据。小波变换的工作原理是应用的平滑滤波器和带通滤波器的先前的水平的平滑化数据。的顶层包含数据的最高分辨率水平。每个这些级别被存储后,其他在此向量之一。该矩阵

fl.dbase$first.last.c
fl.dbase$first.last.c

determines exactly where each level is stored in the vector. Likewise, coefficients stored when the NDWT has been used should only be extracted using the &ldquo;access&rdquo; and &ldquo;put&rdquo; functions below.</td></tr> <tr valign="top"><td>D</td> <td> wavelet coefficients. If you were to write down the discrete wavelet transform of a function then these D would be the coefficients of the wavelet basis functions. Like the C, they are also formed in a pyramidal manner, but stored in a linear array. The storage details are to be found in
确切确定,其中每个电平被存储在矢量。同样地,已被用于存储时,NDWT系数只可提取使用“访问”和“放”功能。</ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>小波系数。如果你写下离散小波变换的功能,然后将这些D小波基函数的系数。的C一样,它们也形成金字塔形的方式,但存储在一个线性阵列。存储的详细信息被发现

fl.dbase$first.last.d
fl.dbase$first.last.d

Likewise, coefficients stored when the NDWT has been used should only be extracted using the &ldquo;access&rdquo; and &ldquo;put&rdquo; functions below. </td></tr> <tr valign="top"><td>nlevels</td> <td> The number of levels in the pyramidal decomposition that produces the coefficients. If you raise 2 to the power of nlevels you get the number of data points used in the decomposition.</td></tr> <tr valign="top"><td>fl.dbase</td> <td> The first last database associated with this decomposition. This is a list consisting of 2 integers, and 2 matrices. The matrices detail how the coefficients are stored in the C and D components of the "wd.object". See the help on first.last for more information. </td></tr> <tr valign="top"><td>filter</td> <td> a list containing the details of the filter that did the decomposition</td></tr> <tr valign="top"><td>type</td> <td> either wavelet indicating that the ordinary wavelet transform was performed or station indicating that the time-ordered non-decimated wavelet transform was done.</td></tr> <tr valign="top"><td>date</td> <td> The date that the transform was performed or the wd was modified.</td></tr> <tr valign="top"><td>bc</td> <td> how the boundaries were handled</td></tr> </table>
同样地,已被使用时,NDWT存储的系数应该只使用“访问”,“put”命令以下功能提取。 </ TD> </ TR> <tr valign="top"> <TD>nlevels</ TD> <TD>水平的金字塔分解,产生系数的数量。如果你提高你在分解中使用的数据点的数量NLEVELS的力量。</ TD> </ TR> <tr valign="top"> <TD> fl.dbase </ TD> < TD>第一次分解与此相关联的数据库。这是一个列表组成的2个整数,和2矩阵。矩阵的wd.object,C和D分量的系数存储在详细说明如何。 first.last更多信息,请参阅帮助。 </ TD> </ TR> <tr valign="top"> <TD> filter</ TD> <td>一个列表,其中包含的过滤器做了分解的细节</ TD> </ TR > <tr valign="top"> <TD>type</ TD> <TD>无论是小波表明普通的小波变换进行或站指示的时间排序的非抽取小波变换进行。 </ TD> </ TR> <tr valign="top"> <TD> date</ TD> <TD>,变换或WD被修改的日期。</ TD> </ TR> <tr valign="top"> <TD> bc </ TD> <TD>的界限如何处理</ TD> </ TR> </ TABLE>


GENERATION----------GENERATION----------

This class of objects is returned from the wd function to represent a (possibly time-ordered non-decimated) wavelet decomposition of a function. Many other functions return an object of class wd.
这个类的对象,则返回从wd函数来表示(可能是时间顺序的非锐减)小波分解的功能。许多其他函数返回一个对象类WD。


方法----------METHODS----------

The wd class of objects has methods for the following generic functions: plot, threshold, summary, print, codedraw.
WD类的对象有以下通用功能的方法:plot,threshold,summary,print,codedraw。


RELAEASE----------RELAEASE----------

Version 3.5.3 Copyright Guy Nason 1994
版本3.5.3版权所有盖利晨1994


(作者)----------Author(s)----------


G P Nason



参见----------See Also----------

wd, wst
wd,wst

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 15:00 , Processed in 0.025147 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表