denoise.2d(waveslim)
denoise.2d()所属R语言包:waveslim
Denoise an Image via the 2D Discrete Wavelet Transform
通过二维离散小波变换的去噪图像
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Perform simple de-noising of an image using the two-dimensional discrete wavelet transform.
执行简单使用的二维离散小波变换的图像去噪。
用法----------Usage----------
denoise.dwt.2d(x, wf = "la8", J = 4, method = "universal", H = 0.5,
noise.dir = 3, rule = "hard")
denoise.modwt.2d(x, wf = "la8", J = 4, method = "universal", H = 0.5,
rule = "hard")
参数----------Arguments----------
参数:x
input matrix (image)
输入矩阵(图像)
参数:wf
name of the wavelet filter to use in the decomposition
的小波滤波器的名称使用在分解
参数:J
depth of the decomposition, must be a number less than or equal to log(min{M,N},2)
深度的分解,必须是一个数小于或等于log(min{M,N},2)
参数:method
character string describing the threshold applied, only "universal" and "long-memory" are currently implemented
字符串描述阈值时,只有"universal"和"long-memory"目前实施
参数:H
self-similarity or Hurst parameter to indicate spectral scaling, white noise is 0.5
自相似Hurst参数来表示光谱缩放,白噪声为0.5
参数:noise.dir
number of directions to estimate background noise standard deviation, the default is 3 which produces a unique estimate of the background noise for each spatial direction
指示来估计背景噪声标准偏差数,默认值是3,对于每个空间方向上产生一个独特的估计的背景噪声
参数:rule
either a "hard" or "soft" thresholding rule may be used
无论是"hard"或"soft"阈值规则可能会使用
Details
详细信息----------Details----------
See Thresholding.
见Thresholding。
值----------Value----------
Image of the same dimension as the original but with high-freqency fluctuations removed.
原,但与高块频率波动除去相同的尺寸的图像。
(作者)----------Author(s)----------
B. Whitcher
参考文献----------References----------
one dimension.
参见----------See Also----------
Thresholding
Thresholding
实例----------Examples----------
## Xbox image[#的Xbox图像]
data(xbox)
n <- NROW(xbox)
xbox.noise <- xbox + matrix(rnorm(n*n, sd=.15), n, n)
par(mfrow=c(2,2), cex=.8, pty="s")
image(xbox.noise, col=rainbow(128), main="Original Image")
image(denoise.dwt.2d(xbox.noise, wf="haar"), col=rainbow(128),
zlim=range(xbox.noise), main="Denoised image")
image(xbox.noise - denoise.dwt.2d(xbox.noise, wf="haar"), col=rainbow(128),
zlim=range(xbox.noise), main="Residual image")
## Daubechies image[#Daubechies小波图像]
data(dau)
n <- NROW(dau)
dau.noise <- dau + matrix(rnorm(n*n, sd=10), n, n)
par(mfrow=c(2,2), cex=.8, pty="s")
image(dau.noise, col=rainbow(128), main="Original Image")
dau.denoise <- denoise.modwt.2d(dau.noise, wf="d4", rule="soft")
image(dau.denoise, col=rainbow(128), zlim=range(dau.noise),
main="Denoised image")
image(dau.noise - dau.denoise, col=rainbow(128), main="Residual image")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|