vineGoF(vines)
vineGoF()所属R语言包:vines
Vine Goodness-of-fit Tests
葡萄的拟合优度测试
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Goodness-of-fit tests to verify whether the dependence structure of a sample is appropriately modeled by vine model.
的拟合优度测试,以验证是否适当的模拟藤模型的相关结构的一个示例。
用法----------Usage----------
vineGoF(vine, data, method = "PIT", ...)
参数----------Arguments----------
参数:vine
A Vine object.
AVine对象。
参数:data
Data matrix of pseudo-observations.
矩阵数据的伪观察。
参数:method
Goodness-of-fit method. Supported values: "PIT" (Probability Integral Transform).
善的配合方法。支持的值:"PIT"(概率积分变换)。
参数:...
Additional arguments for the goodness-of-fit method.
善良的拟合方法的其他参数。
Details
详细信息----------Details----------
The "PIT" (Probability Integral Transform) method uses the vinePIT function to transform the data into variables which are independent and Uniform (0,1) and then use a hypothesis test to verify whether the resulting variables are independent and Uniform (0,1). The additional parameter statistic specifies the test to be applied for this purpose.
"PIT"(概率积分变换)方法使用vinePIT功能的变量是独立的,统一的数据转换成(0,1)“,然后使用一个假设的测试,以验证是否变量是独立的和统一(0,1)。的附加参数statistic指定用于此目的的测试被施加。
statistic Statistic used to verify if the transformed variables are independent and Uniform in (0,1). The default value is "Breymann" and supported methods are:
statistic的统计用于验证是否已转换的变量是独立的,统一的(0,1)。默认值是"Breymann"和支持的方法是:
"Breymann" Test proposed in the Section 7.1 of
"Breymann"测试的第7.1节中提出的
值----------Value----------
A vineGoF or a subclass with specific information about the goodness-of-fit method used. The statistic slot of this object contains the value of the statistic and pvalue the p-value.
AvineGoF或一个子类的具体信息的善良,用合适的方法。 statistic插槽,此对象包含的值的统计信息和pvaluep值。
参考文献----------References----------
Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182–198.
structures for multivariate high-frequency data in finance. Quantitative Finance 1, 1–14.
参见----------See Also----------
vineGoF, vinePIT.
vineGoF,vinePIT。
实例----------Examples----------
copula <- normalCopula(c(-0.25, -0.21, 0.34, 0.51, -0.07, -0.18),
dispstr = "un", dim = 4)
data <- rCopula(100, copula)
selectCopula <- function (vine, j, i, x, y) {
data <- cbind(x, y)
fit <- fitCopula(normalCopula(0), data, method = "itau")
fit@copula
}
normalCVine <- vineFit("CVine", data, method = "ml",
selectCopula = selectCopula,
optimMethod = "")@vine
normalDVine <- vineFit("DVine", data, method = "ml",
selectCopula = selectCopula,
optimMethod = "")@vine
show(normalCVine)
show(normalDVine)
normalCVineGof <- vineGoF(normalCVine, data, method = "PIT",
statistic = "Breymann")
normalDVineGof <- vineGoF(normalDVine, data, method = "PIT",
statistic = "Breymann")
show(normalCVineGof)
show(normalDVineGof)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|