找回密码
 注册
查看: 610|回复: 0

R语言 VGAM包 yeo.johnson()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:59:12 | 显示全部楼层 |阅读模式
yeo.johnson(VGAM)
yeo.johnson()所属R语言包:VGAM

                                        Yeo-Johnson Transformation
                                         杨Johnson转换

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Computes the Yeo-Johnson transformation, which is a normalizing transformation.
计算:杨 - 约翰逊转型,这是归一化转型。


用法----------Usage----------


yeo.johnson(y, lambda, derivative = 0,
            epsilon = sqrt(.Machine$double.eps), inverse = FALSE)



参数----------Arguments----------

参数:y
Numeric, a vector or matrix.  
数字,一个向量或矩阵。


参数:lambda
Numeric. It is recycled to the same length as  y if necessary.  
数字。它再循环到y如果有必要的长度相同。


参数:derivative
Non-negative integer. The default is the ordinary function evaluation, otherwise the derivative with respect to lambda.
非负整数。默认值是普通的功能评价,否则就lambda的导数。


参数:epsilon
Numeric and positive value. The tolerance given to values of lambda when comparing it to 0 or 2.  
数字和正面价值。的耐受性给予lambda值比较时,它为0或2。


参数:inverse
Logical. Return the inverse transformation?  
逻辑。返回逆变换吗?


Details

详细信息----------Details----------

The Yeo-Johnson transformation can be thought of as an extension of the Box-Cox transformation. It handles both positive and  negative values, whereas the Box-Cox transformation only handles positive values. Both can be used to transform the data so as to improve normality. They can be used to perform LMS quantile regression.
杨 - 约翰逊的转换可以被认为是作为一个扩展的Box-Cox转换。它处理的正面和负面的价值观,Box-Cox转换,而只处理正面的价值观。两者都可以用来对数据进行转换,以改善常态。它们可以被用来执行LMS位数回归。


值----------Value----------

The Yeo-Johnson transformation or its inverse, or its derivatives with respect to lambda, of y.
杨 - 约翰逊改造或逆,或它的衍生物就到lambda外,y。


注意----------Note----------

If inverse = TRUE then the argument derivative = 0 is required.
如果inverse = TRUE的说法derivative = 0需要。


(作者)----------Author(s)----------


Thomas W. Yee



参考文献----------References----------

A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954–959.
Quantile regression via vector generalized additive models. Statistics in Medicine, 23, 2295–2315.

参见----------See Also----------

lms.yjn, boxcox.
lms.yjn,boxcox。


实例----------Examples----------


y = seq(-4, 4, len = (nn <- 200))
ltry = c(0, 0.5, 1, 1.5, 2)  # Try these values of lambda[请尝试以下的lambda值]
lltry = length(ltry)
psi = matrix(as.numeric(NA), nn, lltry)
for(ii in 1:lltry)
    psi[,ii] = yeo.johnson(y, lambda = ltry[ii])

## Not run: [#不运行:]
matplot(y, psi, type = "l", ylim = c(-4, 4), lwd = 2, lty = 1:lltry,
        ylab = "Yeo-Johnson transformation", col = 1:lltry, las = 1,
        main = "Yeo-Johnson transformation with some values of lambda")
abline(v = 0, h = 0)
legend(x = 1, y = -0.5, lty = 1:lltry, legend = as.character(ltry),
       lwd = 2, col = 1:lltry)
## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 12:34 , Processed in 0.023024 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表