rlplot.egev(VGAM)
rlplot.egev()所属R语言包:VGAM
Return Level Plot for GEV Fits
返回平积GEV适合
译者:生物统计家园网 机器人LoveR
描述----------Description----------
A return level plot is constructed for a GEV-type model.
返回平积构造的GEV型模型。
用法----------Usage----------
rlplot.egev(object, plot.it = TRUE,
probability = c((1:9)/100, (1:9)/10, 0.95, 0.99, 0.995, 0.999),
add.arg = FALSE, xlab = "Return Period", ylab = "Return Level",
main = "Return Level Plot",
pch = par()$pch, pcol.arg = par()$col, pcex = par()$cex,
llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
slty.arg = par()$lty, scol.arg = par()$col, slwd.arg = par()$lwd,
ylim = NULL, log = TRUE, CI = TRUE, epsilon = 1e-05, ...)
参数----------Arguments----------
参数:object
A VGAM extremes model of the GEV-type, produced by vglm with a family function either "gev" or "egev".
AVGAM极端模型的GEV型,所产生的vglm是"gev"或"egev"家庭功能。
参数:plot.it
Logical. Plot it? If FALSE no plot will be done.
逻辑。图呢? FALSE如果没有图将得到伸张。
参数:probability
Numeric vector of probabilities used.
数字矢量使用的概率。
参数:add.arg
Logical. Add the plot to an existing plot?
逻辑。添加图现有的图?
参数:xlab
Caption for the x-axis. See par.
首领的x轴。见par。
参数:ylab
Caption for the y-axis. See par.
首领为y轴。见par。
参数:main
Title of the plot. See title.
标题的图。见title。
参数:pch
Plotting character. See par.
绘制字符。见par。
参数:pcol.arg
Color of the points. See the col argument of par.
的各点的颜色。请参阅colpar参数。
参数:pcex
Character expansion of the points. See the cex argument of par.
字符扩展之分。请参阅cexpar参数。
参数:llty.arg
Line type. Line type. See the lty argument of par.
线路类型。线路类型。请参阅ltypar参数。
参数:lcol.arg
Color of the lines. See the col argument of par.
线条的颜色。请参阅colpar参数。
参数:llwd.arg
Line width. See the lwd argument of par.
线条宽度。请参阅lwdpar参数。
参数:slty.arg, scol.arg, slwd.arg
Correponding arguments for the lines used for the confidence intervals. Used only if CI=TRUE.
Correponding参数的置信区间的线条。用只有CI=TRUE。
参数:ylim
Limits for the y-axis. Numeric of length 2.
的y轴的限制。数字的长度为2。
参数:log
Logical. If TRUE then log="" otherwise log="x". This changes the labelling of the x-axis only.
逻辑。如果TRUE然后log="",否则log="x"。本仅改变标签的x轴。
参数:CI
Logical. Add in a 95 percent confidence interval?
逻辑。添加95%的置信区间?
参数:epsilon
Numeric, close to zero. Used for the finite-difference approximation to the first derivatives with respect to each parameter. If too small, numerical problems will occur.
数字,靠近为零。用于相对于每个参数的一阶导数的有限差分近似。如果过小,数值就会出现问题。
参数:...
Arguments passed into the plot function when setting up the entire plot. Useful arguments here include sub and las.
到plot函数传递参数时,设立了整个图。有用的参数包括:sub和las。
Details
详细信息----------Details----------
A return level plot plots zp versus log(yp). It is linear if the shape parameter xi=0. If xi<0 then the plot is convex with asymptotic limit as p approaches zero at mu-sigma/xi. And if xi>0 then the plot is concave and has no finite bound. Here, G(zp) = 1-p where 0<p<1 (p corresponds to the argument probability) and G is the cumulative distribution function of the GEV distribution. The quantity zp is known as the return level associated with the return period 1/p. For many applications, this means zp is exceeded by the annual maximum in any particular year with probability p.
返回平积曲线zp与log(yp)。它是线性的,如果形状参数xi=0。如果xi<0然后图是凸的渐近极限p在mu-sigma/xi趋近于零。如果xi>0的图是凹的,并没有有限约束。在这里,G(zp) = 1-p其中0<p<1(p对应的说法probability)和G是GEV分布的累积分布函数。的数量zp的返回电平被称为与回收期1/p相关。对于许多应用程序,这意味着zp超过年度最高在任何特定年份的概率p。
The points in the plot are the actual data.
在图中的点是实际的数据。
值----------Value----------
In the post slot of the object is a list called rlplot with list components
在post插槽的对象是被称为rlplot的列表组件的列表
参数:yp
-log(probability), which is used on the x-axis.
-log(probability),它是用来在x-轴。
参数:zp
values which are used for the y-axis
用于y轴的值
参数:lower, upper
lower and upper confidence limits for the 95 percent confidence intervals evaluated at the values of probability (if CI=TRUE).
上限和下限的置信区间为95%的置信区间,评估值probability(如果CI=TRUE“)。
注意----------Note----------
The confidence intervals are approximate, being based on finite-difference approximations to derivatives.
的置信区间是近似的,是基于有限差分近似的衍生工具。
(作者)----------Author(s)----------
T. W. Yee
参考文献----------References----------
An Introduction to Statistical Modeling of Extreme Values. London: Springer-Verlag.
参见----------See Also----------
egev.
egev。
实例----------Examples----------
gdata = data.frame(y = rgev(n <- 100, scale = 2, shape = -0.1))
fit = vglm(y ~ 1, egev, gdata, trace = TRUE)
# Identity link for all parameters:[所有参数的标识链接:]
fit2 = vglm(y ~ 1, egev(lshape = identity, lscale = identity,
iscale = 10), gdata, trace = TRUE)
coef(fit2, matrix = TRUE)
## Not run: [#不运行:]
par(mfrow = c(1, 2))
rlplot(fit) -> i1
rlplot(fit2, pcol = "darkorange", lcol = "blue", log = FALSE,
scol = "darkgreen", slty = "dashed", las = 1) -> i2
range(i2@post$rlplot$upper - i1@post$rlplot$upper) # Should be near 0[应该是接近0]
range(i2@post$rlplot$lower - i1@post$rlplot$lower) # Should be near 0[应该是接近0]
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|