quasibinomialff(VGAM)
quasibinomialff()所属R语言包:VGAM
Quasi-Binomial Family Function
准二项式家庭功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Family function for fitting generalized linear models to binomial responses, where the dispersion parameters are unknown.
家庭功能的广义线性模型拟合二项式反应,分散参数是未知的。
用法----------Usage----------
quasibinomialff(link = "logit", mv = FALSE, onedpar = !mv,
parallel = FALSE, zero = NULL)
参数----------Arguments----------
参数:link
Link function. See Links for more choices.
Link功能。见Links更多的选择。
参数:mv
Multivariate response? If TRUE, then the response is interpreted as M binary responses, where M is the number of columns of the response matrix. In this case, the response matrix should have zero/one values only. If FALSE and the response is a (2-column) matrix, then the number of successes is given in the first column and the second column is the number of failures.
多因素反应呢?如果TRUE,然后响应被解释作为M的二进制响应,其中M是响应矩阵的列的数量。响应矩阵在这种情况下,应该有只0/1值。如果FALSE和响应是一个矩阵(2列),然后成功的次数的第一列和第二列中给出的是失败的次数。
参数:onedpar
One dispersion parameter? If mv, then a separate dispersion parameter will be computed for each response (column), by default. Setting onedpar=TRUE will pool them so that there is only one dispersion parameter to be estimated.
一个分散参数?如果mv,然后一个单独的分散参数计算每个响应(列),默认情况下。设置onedpar=TRUE集中,所以只有一个分散参数进行估计。
参数:parallel
A logical or formula. Used only if mv is TRUE. This argument allows for the parallelism assumption whereby the regression coefficients for a variable is constrained to be equal over the M linear/additive predictors.
一个逻辑或公式。使用,只有mv是TRUE。该参数允许的并行假设变量的回归系数限制为相等的M线性/添加剂的预测。
参数:zero
An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The values must be from the set {1,2,...,M}, where M is the number of columns of the matrix response.
指定一个整数值向量线性/添加剂的预测模型仅作为拦截。这些值必须是从集合{1,2,...,M},其中M是数列的矩阵响应。
Details
详细信息----------Details----------
The final model is not fully estimated by maximum likelihood since the dispersion parameter is unknown (see pp.124–8 of McCullagh and Nelder (1989) for more details).
最终的模型不能完全通过最大似然估计,由于分散参数是未知的(McCullagh和Nelder(1989)pp.124-8的更多细节)。
A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the binomial model. Over-dispersion is more common in practice.
一个的分散参数是小于/大于团结对应under-/over-dispersion相对于二项式模型。过度分散在实践中是比较常见的。
Setting mv=TRUE is necessary when fitting a Quadratic RR-VGLM (see cqo) because the response will be a matrix of M columns (e.g., one column per species). Then there will be M dispersion parameters (one per column of the response).
设置mv=TRUE是必要的,装修时一个二次RR-VGLM的(见cqo),因为响应将是一个矩阵M列(例如,每个物种的一列)。然后会出现M的分散参数(每列的响应)。
值----------Value----------
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, vgam, rrvglm, cqo, and cao.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,vgam,rrvglm,cqo和cao。
注意----------Note----------
If mv is FALSE (the default), then the response can be of one of three formats: a factor (first level taken as success), a vector of proportions of success, or a 2-column matrix (first column = successes) of counts. The argument weights in the modelling function can also be specified. In particular, for a general vector of proportions, you will need to specify weights because the number of trials is needed.
如果mv是FALSE(默认值),然后响应可以是以下三种格式之一:(第一级作为成功的一个因素),矢量成功的比例,或2列矩阵(第一列=成功)的计数。参数weights的建模功能也可以指定。特别是,对于一个向量的比例,你会需要指定weights,因为审判的需要。
If mv is TRUE, then the matrix response can only be of one format: a matrix of 1's and 0's (1=success).
如果mv是TRUE,那么矩阵响应只能是一种格式:一个矩阵的1和0(1 =成功)。
This function is only a front-end to the VGAM family function binomialff(); indeed, quasibinomialff(...) is equivalent to binomialff(..., dispersion=0). Here, the argument dispersion=0 signifies that the dispersion parameter is to be estimated.
此功能仅前端的VGAM家庭功能binomialff();的确,quasibinomialff(...)是相当于binomialff(..., dispersion=0)。在这里,参数dispersion=0表示的分散参数进行估计。
Regardless of whether the dispersion parameter is to be estimated or not, its value can be seen from the output from the summary() of the object.
无论是否分散参数是要估计或没有,可以看出,它的值从输出从summary()的对象。
(作者)----------Author(s)----------
Thomas W. Yee
参考文献----------References----------
Generalized Linear Models, 2nd ed. London: Chapman & Hall.
参见----------See Also----------
binomialff, rrvglm, cqo, cao, logit, probit, cloglog, cauchit, poissonff, quasipoissonff, quasibinomial.
binomialff,rrvglm,cqo,cao,logit,probit,cloglog,cauchit,poissonff,quasipoissonff,quasibinomial。
实例----------Examples----------
quasibinomialff()
quasibinomialff(link="probit")
# Nonparametric logistic regression[非参数logistic回归]
hunua = transform(hunua, a.5 = sqrt(altitude)) # Transformation of altitude[转型的高度]
fit1 = vglm(agaaus ~ poly(a.5, 2), quasibinomialff, hunua)
fit2 = vgam(agaaus ~ s(a.5, df=2), quasibinomialff, hunua)
## Not run: [#不运行:]
plot(fit2, se=TRUE, llwd=2, lcol="red", scol="red",
xlab="sqrt(altitude)", ylim=c(-3,1),
main="GAM and quadratic GLM fitted to species data")
plotvgam(fit1, se=TRUE, lcol="blue", scol="blue", add=TRUE, llwd=2)
## End(Not run)[#(不执行)]
fit1@misc$dispersion # dispersion parameter[分散参数]
logLik(fit1)
# Here, the dispersion parameter defaults to 1[在这里,分散参数的缺省值为1]
fit0 = vglm(agaaus ~ poly(a.5, 2), binomialff, hunua)
fit0@misc$dispersion # dispersion parameter[分散参数]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|