huber(VGAM)
huber()所属R语言包:VGAM
Huber's least favourable distribution family function
Huber的最有利的分配家庭功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
M-estimation of the two parameters of Huber's least favourable distribution. The one parameter case is also implemented.
M-Huber的最有利分布的两个参数的估计。一个参数的情况下也可以实现。
用法----------Usage----------
huber1(llocation = "identity", elocation = list(),
k = 0.862, imethod = 1)
huber(llocation = "identity", lscale = "loge", elocation = list(),
escale = list(), k = 0.862, imethod = 1, zero = 2)
参数----------Arguments----------
参数:llocation, lscale
Link functions applied to the location and scale parameters. See Links for more choices.
链接功能应用到的位置和尺度参数。见Links更多的选择。
参数:elocation, escale
List. Extra argument for the links. See earg in Links for general information.
列表。额外的参数的链接。见earg中Links的一般信息。
参数:k
Tuning constant. See rhuber for more information.
时间常数。见rhuber更多信息。
参数:imethod, zero
See CommonVGAMffArguments for information. The default value of zero means the scale parameter is modelled as an intercept-only.
见CommonVGAMffArguments的信息。仅截距模型的尺度参数的默认值zero。
Details
详细信息----------Details----------
Huber's least favourable distribution family function is popular for resistant/robust regression. The center of the distribution is normal and its tails are double exponential.
Huber的最有利的分布族是受欢迎的功能/防水稳健回归。该中心的分布是正常的,它的尾巴是双指数。
By default, the mean is the first linear/additive predictor (returned as the fitted values; this is the location parameter), and the log of the scale parameter is the second linear/additive predictor. The Fisher information matrix is diagonal; Fisher scoring is implemented.
缺省情况下,平均值是第一线性/添加剂预测器(作为拟合值返回,这是位置参数),和尺度参数的log是第二线性/添加剂预测器。 Fisher信息矩阵是对角线费舍尔得分的实现。
The VGAM family function huber1() estimates only the location parameter. It assumes a scale parameter of unit value.
VGAM家庭功能huber1()估计的位置参数。它假定单位价值尺度参数。
值----------Value----------
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,vgam。
注意----------Note----------
Warning: actually, huber() may be erroneous since the first derivative is not continuous when there are two parameters to estimate. huber1() is fine in this respect.
警告:实际上,huber()可能是错误的,因为一阶导数是不连续的时,有两个参数来估计。 huber1()是在这方面的罚款。
The response should be univariate.
应该是单变量的响应。
(作者)----------Author(s)----------
T. W. Yee. Help was given by Arash Ardalan.
参考文献----------References----------
Robust Statistics, 2nd ed. New York: Wiley.
参见----------See Also----------
rhuber, normal1, gaussianff, laplace, CommonVGAMffArguments.
rhuber,normal1,gaussianff,laplace,CommonVGAMffArguments。
实例----------Examples----------
set.seed(1231); NN = 30; coef1 = 1; coef2 = 10
hdata = data.frame(x2 = sort(runif(NN)))
hdata = transform(hdata, y = rhuber(NN, mu = coef1 + coef2 * x2))
hdata$x2[1] = 0.0 # Add an outlier[添加一个局外人]
hdata$y[1] = 10
fit.huber <- vglm(y ~ x2, huber (imethod = 3), hdata, trace = TRUE)
fit.huber1 <- vglm(y ~ x2, huber1(imethod = 3), hdata, trace = TRUE)
coef(fit.huber, matrix = TRUE)
summary(fit.huber)
## Not run: # Plot the results[#不运行:#绘制的结果]
plot(y ~ x2, hdata, col = "blue", las = 1)
lines(fitted(fit.huber) ~ x2, hdata, col = "darkgreen", lwd = 2)
fit.lm <- lm(y ~ x2, hdata) # Compare to a LM:[比较一个LM:]
lines(fitted(fit.lm) ~ x2, hdata, col = "lavender", lwd = 3)
# Compare to truth:[比较真相:]
lines(coef1 + coef2 * x2 ~ x2, hdata, col = "orange", lwd = 2, lty = "dashed")
legend("bottomright", legend = c("truth", "huber", "lm"),
col = c("orange", "darkgreen", "lavender"),
lty = c("dashed", "solid", "solid"), lwd = c(2, 2, 3))
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|