找回密码
 注册
查看: 334|回复: 0

R语言 VGAM包 fnormal1()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:34:50 | 显示全部楼层 |阅读模式
fnormal1(VGAM)
fnormal1()所属R语言包:VGAM

                                         Folded Normal Distribution Family Function
                                         倍数正态分布家庭功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Fits a (generalized) folded (univariate) normal distribution.
适用于(广义)倍数单变量正态分布。


用法----------Usage----------


fnormal1(lmean="identity", lsd="loge", emean=list(), esd=list(), imean=NULL,
         isd=NULL, a1=1, a2=1, nsimEIM=500, imethod=1, zero=NULL)



参数----------Arguments----------

参数:lmean, lsd
Link functions for the mean and standard deviation parameters of the usual univariate normal distribution. They are mu and sigma respectively. See Links for more choices.  
为通常的单变量正态分布的均值和标准偏差参数的链接功能。他们是mu和sigma分别。见Links更多的选择。


参数:emean, esd
List. Extra argument for each of the links. See earg in Links for general information.  
列表。每个环节的额外参数。见earg中Links的一般信息。


参数:imean, isd
Optional initial values for mu and sigma. A NULL means a value is computed internally.  
可选的初始值mu和sigma。 ANULL是指在内部计算的值。


参数:a1, a2
Positive weights, called a1 and a2 below. Each must be of length 1.  
正权,被称为a1和a2下面。每个人都必须是长度为1。


参数:nsimEIM, imethod, zero
See CommonVGAMffArguments.  
见CommonVGAMffArguments。


Details

详细信息----------Details----------

If a random variable has an ordinary univariate normal distribution then the absolute value of that random variable has an ordinary folded normal distribution. That is, the sign has not been recorded; only the magnitude has been measured.
如果一个随机变量,然后有一个普通的单变量正态分布的随机变量的绝对值,有一个普通的,倍数的正态分布。即,该标志并没有已经记录,只有幅度已测量。

More generally, suppose X is normal with mean mean and standard deviation sd. Let Y=max(a1*X, -a2*X) where a1 and a2 are positive weights. This means that Y = a1*X for X > 0, and Y = a2*X for X < 0. Then Y is said to have a generalized folded normal distribution. The ordinary folded normal distribution corresponds to the special case a1 = a2 = 1.
更一般地,假设X是正常的,平均mean和标准差sd。让我们Y=max(a1*X, -a2*X)其中a1和a2是积极的权重。这意味着Y = a1*X X > 0,Y = a2*XX < 0。然后Y是说,有一个广义的倍数正态分布。普通的倍数正态分布对应的特殊情况下,a1 = a2 = 1。

The probability density function of the ordinary folded normal distribution can be written dnorm(y, mean, sd) + dnorm(y, -mean, sd) for y &ge; 0. By default, mean and log(sd) are the linear/additive predictors. Having mean=0 and sd=1 results in the half-normal distribution. The mean of an ordinary folded normal distribution is
普通的倍数正态分布的概率密度函数的可写dnorm(y, mean, sd) + dnorm(y, -mean, sd)y &ge; 0。默认情况下,mean和log(sd)是线性/对添加剂的预测。有mean=0和sd=1结果在半正态分布。普通的倍数正态分布的平均值是

and these are returned as the fitted values. Here, Phi is the cumulative distribution function of a standard normal (pnorm).
这些返回的拟合值。在这里,Phi是标准正态累积分布函数(pnorm)的。


值----------Value----------

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能如vglm和vgam。


警告----------Warning ----------

Under- or over-flow may occur if the data is ill-conditioned. It is recommended that several different initial values be used to help avoid local solutions.
不足或过流时可能会出现的数据是病态的。建议几个不同的初始值被用来帮助避免局部的解决方案。


注意----------Note----------

The response variable for this family function is the same as normal1 except positive values are required. Reasonably good initial values are needed. Fisher scoring using simulation is implemented.
对这个家庭的功能是一样的normal1除了正值的响应变量。相当不错的初始值是必要的。 Fisher评分使用模拟来实现。

See CommonVGAMffArguments for general information about many of these arguments.
见CommonVGAMffArguments的一般信息,很多这些参数。


(作者)----------Author(s)----------


Thomas W. Yee



参考文献----------References----------

Application of the generalized folded-normal distribution to the process capability measures. International Journal of Advanced Manufacturing Technology, 26, 825&ndash;830.

参见----------See Also----------

rfnorm, normal1, dnorm, skewnormal1.
rfnorm,normal1,dnorm,skewnormal1。


实例----------Examples----------


m =  2; SD = exp(1)
y = rfnorm(n <- 1000, m=m, sd=SD)
## Not run: hist(y, prob=TRUE, main=paste("fnormal1(m=",m,", sd=",round(SD,2),")"))[#不运行:历史(Y,概率= TRUE,主要=粘贴的“fnormal1(M =”米“,SD =”轮(SD,2),“”))]
fit = vglm(y ~ 1, fam=fnormal1, trace=TRUE)
coef(fit, mat=TRUE)
(Cfit = Coef(fit))
mygrid = seq(min(y), max(y), len=200) # Add the fit to the histogram[添加适合的直方图]
## Not run: lines(mygrid, dfnorm(mygrid, Cfit[1], Cfit[2]), col="red")[#不运行线(mygrid,dfnorm(mygrid,CFIT [1],CFIT [2]),山口=“红色”)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 21:32 , Processed in 0.026547 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表