找回密码
 注册
查看: 422|回复: 0

R语言 vegan包 wcmdscale()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:15:30 | 显示全部楼层 |阅读模式
wcmdscale(vegan)
wcmdscale()所属R语言包:vegan

                                        Weighted Classical (Metric) Multidimensional Scaling
                                         (公制)加权古典多维标度

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Weighted classical multidimensional scaling,  also known as weighted principal coordinates analysis.
加权古典多维标度,也被称为加权主坐标分析。


用法----------Usage----------


wcmdscale(d, k, eig = FALSE, add = FALSE, x.ret = FALSE, w)



参数----------Arguments----------

参数:d
a distance structure such as that returned by dist or a full symmetric matrix containing the dissimilarities.
距离结构,如返回dist或全对称矩阵的异同。


参数:k
the dimension of the space which the data are to be represented in; must be in {1,2,…,n-1}.  If missing, all dimensions with above zero eigenvalue.
该数据要被表示的空间的维数;必须在{1,2,…,n-1}。如果缺少,所有尺寸大于零特征值。


参数:eig
indicates whether eigenvalues should be returned.
指示是否应该返回特征值。


参数:add
logical indicating if an additive constant c* should be computed, and added to the non-diagonal dissimilarities such that all n-1 eigenvalues are non-negative. <STRONG>Not implemented</STRONG>.  
逻辑表示,如果添加剂的常数c*应进行计算,并添加到非对角线异同使得所有n-1特征值都是非负的。 <STRONG>不执行</ STRONG>。


参数:x.ret
indicates whether the doubly centred symmetric distance matrix should be returned.
指示是否应该返回的双中心对称的距离矩阵。


参数:w
Weights of points.
点的权重。


Details

详细信息----------Details----------

Function wcmdscale is based on function cmdscale (package stats of base R), but it uses point weights. Points with high weights will have a stronger influence on the result than those with low weights. Setting equal weights w = 1 will give ordinary multidimensional scaling.
功能wcmdscale功能的基础上,cmdscale(包stats碱基r),但它使用点的权重。点具有较高的权重,将具有更强的影响力比与低重量的结果。设置相同的权重w = 1会给普通的多维标度。


值----------Value----------

If eig = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows give the coordinates of the points chosen to represent the dissimilarities.  Otherwise, an object of class wcmdscale containing the components that are mostly similar as in cmdscale:
如果eig = FALSE和x.ret = FALSE(默认),矩阵k列的行给所选择的点的坐标来表示的异同。否则,类的一个对象wcmdscale包含的组件大多是类似的,作为在cmdscale:


参数:points
a matrix with k columns whose rows give the coordinates of the points chosen to represent the dissimilarities.
矩阵k列的行给所选择的点的坐标来表示的异同。


参数:eig
the n-1 eigenvalues computed during the scaling process if eig is true.
n-1特征值计算的缩放过程中,,如果eig是真实的。


参数:x
the doubly centred and weighted distance matrix if x.ret is true.
如果x.ret是真正的双中心和加权距离矩阵。


参数:GOF
Goodness of fit statistics for k axes. The first value is based on the sum of absolute values of all eigenvalues, and the second value is based on the sum of positive eigenvalues
k轴的统计数据的拟合优度。是根据所述第一值的所有本征值的绝对值的总和,和第二值是根据正的特征值的总和


参数:weights
Weights.
权重。


参数:negaxes
A matrix of scores for axes with negative eigenvalues scaled by the absolute eigenvalues similarly as points. This is NULL if there are no negative eigenvalues or k was specified, and would not include negative eigenvalues.   
分数的矩阵负本征值的轴与缩放的绝对特征值同样points。这是NULL如果没有负本征值或k被指定,将不包括负本征值。


参考文献----------References----------

Some distance properties of latent root and vector  methods used in multivariate analysis.   Biometrika 53, 325&ndash;328.
Multivariate Analysis, London: Academic Press.

参见----------See Also----------

cmdscale.  Also monoMDS, and isoMDS and sammon in package MASS.  
cmdscale。 monoMDS和isoMDS和sammon的包MASS。


实例----------Examples----------


## Correspondence analysis as a weighted principal coordinates[#作为加权的主要坐标的对应分析]
## analysis of Euclidean distances of Chi-square transformed data[#卡方转换后的数据分析,欧氏距离]
data(dune)
rs <- rowSums(dune)/sum(dune)
d <- dist(decostand(dune, "chi"))
ord <- wcmdscale(d, w = rs, eig = TRUE)
## Ordinary CA[#普通CA]
ca <- cca(dune)
## Eigevalues are numerically similar[#Eigevalues在数值上是相似的]
ca$CA$eig - ord$eig
## Configurations are similar when site scores are scaled by[#配置是类似的,当网站分数缩放]
## eigenvalues in CA[#在CA的特征值]
procrustes(ord, ca, choices=1:19, scaling = 1)
plot(procrustes(ord, ca, choices=1:2, scaling=1))
## Reconstruction of non-Euclidean distances with negative eigenvalues[#改的非欧氏距离,负本征值]
d <- vegdist(dune)
ord <- wcmdscale(d, eig = TRUE)
## Only positive eigenvalues:[#只有正的特征值:]
cor(d, dist(ord$points))
## Correction with negative eigenvalues:[#修正为负的特征值:]
cor(d, sqrt(dist(ord$points)^2 - dist(ord$negaxes)^2))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 02:23 , Processed in 0.024583 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表