找回密码
 注册
查看: 354|回复: 0

R语言 vegan包 mso()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:08:38 | 显示全部楼层 |阅读模式
mso(vegan)
mso()所属R语言包:vegan

                                         Functions for performing and displaying a spatial partitioning
                                         执行和显示空间分割的功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The function mso adds an attribute vario to an object of class "cca" that describes the spatial partitioning of the cca object and performs an optional permutation test for the spatial independence of residuals. The function plot.mso creates a diagnostic plot of the spatial
的功能mso添加的属性vario类"cca"cca对象描述的空间分隔,并执行一个可选的置换试验残差的空间独立的一个目的。函数plot.mso的空间创建一个诊断图


用法----------Usage----------


mso(object.cca, object.xy, grain = 1, round.up = FALSE, permutations = FALSE)
msoplot(x, alpha = 0.05, explained = FALSE, ylim = NULL, ...)



参数----------Arguments----------

参数:object.cca
An object of class cca, created by the cca or rda function.  
CCA的类的对象,创建由cca或rda函数。


参数:object.xy
A vector, matrix or data frame with the spatial coordinates of the data represented by object.cca. Must have the same number of rows as object.cca$CA$Xbar (see cca.object).   
甲向量,矩阵或数据框的表示的object.cca数据的空间坐标。必须具有相同的行数object.cca$CA$Xbar(见cca.object“)。


参数:grain
Interval size for distance classes.
距离班的间隔尺寸。


参数:round.up
Determines the choice of breaks. If false, distances are rounded to the nearest multiple of grain. If true, distances are rounded to the upper multiple of grain.  
确定选择截断。如果为false,距离四舍五入到最接近的粮食。如果为true,距离舍入到上数倍的粮食。


参数:permutations
If false, suppresses the permutation test. If an integer, determines the number of permutations for the Mantel test of spatial independence of residual inertia.
如果为false,抑制了置换检验。如果一个整数,确定残余惯性空间独立的Mantel检验的数目排列。


参数:x
A result object of mso.
一个结果对象mso。


参数:alpha
Significance level for the two-sided permutation test of the Mantel statistic for spatial independence of residual inertia and for the point-wise envelope of the variogram of the total variance. A Bonferroni-type correction can be achieved by dividing the overall significance value (e.g. 0.05) by the number of distance classes.  
的Mantel统计量的空间独立的残余惯性和逐点的包络线的总方差的变差函数的双面置换试验的显着性水平。甲邦弗朗尼型校正,可以实现除以值(例如0.05)的整体的意义上,由数量的距离类。


参数:explained
If false, suppresses the plotting of the variogram of explained variance.
如果为false,抑制的解释方差变异图的绘制。


参数:ylim
Limits for y-axis.
为y轴的限制。


参数:...
Other arguments passed to functions.
其他参数传递给函数。


Details

详细信息----------Details----------

The Mantel test is an adaptation of the function mantel of the vegan package to the parallel testing of several distance classes. It compares the mean inertia in each distance class to the pooled mean inertia of all other distance classes.
Mantel检验是一个适应的功能mantel的vegan包的几种距离的并行测试类。比较平均的惯性,在每个距离的类中的所有其他距离班汇集的平均惯性。

If there are explanatory variables (RDA, CCA, pRDA, pCCA) and a significance test for residual autocorrelation was performed when running the function mso, the function plot.mso will print an estimate of how much the autocorrelation (based on significant distance classes) causes the global error variance of the regression analysis to be underestimated
如果有解释变量(RDA,CCA,PRDA,PCCA)和显着性检验残差自相关运行时的功能mso“的功能plot.mso将打印的估计多少自相关(基于显着的距离类)引起的全局误差方差的回归分析被低估


值----------Value----------

The function mso returns an amended cca or rda object with the additional attributes grain, H, H.test and vario.
函数mso返回修改cca或rda对象的附加属性grain,H,H.test和vario。


参数:grain
The grain attribute defines the interval size of the distance classes .  
的晶粒的属性定义的距离类的间隔大小。


参数:H
H is an object of class 'dist' and contains the geographic distances between observations.  
H是类dist的一个目的和观测值之间包含的GEO距离。


参数:H.test
H.test contains a set of dummy variables that describe which pairs of observations (rows = elements of object$H) fall in which distance class (columns).   
H.test包含了一组虚拟变量来描述对观测(行=object$H)下降的元素,在距离级(列)。


参数:vario
The vario attribute is a data frame that contains some or all of the following components for the rda case (cca case in brackets):     
VARIO属性是一个数据框,包括部分或全部以下组件的的RDA情况下(CCA情况下,在括号中)为:

HDistance class as multiples of grain.  
H远程类粮食的倍数。

Dist Average distance of pairs of observations in distance class H.  
Dist的平均距离对观测距离H级

n  Number of unique pairs of observations in distance class H.   
N多的独特的对观测距离H级

All Empirical (chi-square) variogram of total variance (inertia).   
All经验(卡方)总方差变异函数(惯性)。

Sum Sum of empirical (chi-square) variograms of explained and residual variance (inertia).   
Sum的经验(卡方)的变异函数的解释和剩余方差(惯性)的总和。

CA Empirical (chi-square) variogram of residual variance (inertia).   
CA经验(卡方)变异函数的剩余方差(惯性)。

CCA Empirical (chi-square) variogram of explained variance (inertia).   
CCA经验(卡方)变差函数解释方差(惯性)。

pCCA Empirical (chi-square) variogram of conditioned variance (inertia).   
pCCA经验(卡方)的条件方差变异函数(惯性)。

se Standard error of the empirical (chi-square) variogram of total variance (inertia).   
se标准错误的经验(卡方)总方差变异函数(惯性)。

CA.signifP-value of permutation test for spatial independence of residual variance (inertia).      
CA.signifP-值的空间独立的残差方差置换检验(惯性)。


注意----------Note----------

The function is based on the code published in the Ecological
功能是根据公布的代码在生态


(作者)----------Author(s)----------


The responsible author was Helene Wagner.



参考文献----------References----------



参见----------See Also----------

Function cca and rda,
函数cca和rda,


实例----------Examples----------


## Reconstruct worked example of Wagner (submitted):[#重建工作的瓦格纳(提交),例如:]
X <- matrix(c(1, 2, 3, 2, 1, 0), 3, 2)
Y <- c(3, -1, -2)
tmat <- c(1:3)
## Canonical correspondence analysis (cca):[#典范对应分析(CCA):]
Example.cca <- cca(X, Y)
Example.cca <- mso(Example.cca, tmat)
msoplot(Example.cca)
Example.cca$vario

## Correspondence analysis (ca):[#对应分析(CA):]
Example.ca <- mso(cca(X), tmat)
msoplot(Example.ca)

## Unconstrained ordination with test for autocorrelation[#约束的协调与自相关测试]
## using oribatid mite data set as in Wagner (2004)[#螨螨数据集在瓦格纳(2004年)]
data(mite)
data(mite.env)
data(mite.xy)

mite.cca <- cca(log(mite + 1))
mite.cca <- mso(mite.cca, mite.xy, grain =  1, permutations = 100)
msoplot(mite.cca)
mite.cca

## Constrained ordination with test for residual autocorrelation[#约束的协调与检验残差自相关]
## and scale-invariance of species-environment relationships[#和尺度不变性的物种与环境的关系]
mite.cca <- cca(log(mite + 1) ~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)
mite.cca <- mso(mite.cca, mite.xy, permutations = 100)
msoplot(mite.cca)
mite.cca

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 04:34 , Processed in 0.020233 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表