mantel.correlog(vegan)
mantel.correlog()所属R语言包:vegan
Mantel Correlogram
曼特尔相关图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Function mantel.correlog computes a multivariate Mantel correlogram. Proposed by Sokal (1986) and Oden and Sokal (1986), the method is also described in Legendre and Legendre (1998, pp. 736-738).
函数mantel.correlog计算多元曼特尔相关图。索卡尔(1986)和奥登和索卡尔(1986)提出的方法还介绍了在勒让德和勒让德(1998年,第736-738)。
用法----------Usage----------
mantel.correlog(D.eco, D.geo=NULL, XY=NULL, n.class=0, break.pts=NULL,
cutoff=TRUE, r.type="pearson", nperm=999, mult="holm", progressive=TRUE)
## S3 method for class 'mantel.correlog'
plot(x, alpha=0.05, ...)
参数----------Arguments----------
参数:D.eco
An ecological distance matrix, with class either dist or matrix.
一个生态的距离矩阵,与类是dist或matrix。
参数:D.geo
A geographic distance matrix, with class either dist or matrix. Provide either D.geo or XY. Default: D.geo=NULL.
的GEO距离矩阵,与类是dist或matrix。提供是D.geo或XY。默认值:D.geo=NULL。
参数:XY
A file of Cartesian geographic coordinates of the points. Default: XY=NULL.
笛卡尔的GEO坐标点的文件。默认值:XY=NULL。
参数:n.class
Number of classes. If n.class=0, the Sturges equation will be used unless break points are provided.
班数。如果n.class=0,的斯特奇斯方程将被使用,除非破发点。
参数:break.pts
Vector containing the break points of the distance distribution. Provide (n.class+1) breakpoints, that is, a list with a beginning and an ending point. Default: break.pts=NULL.
Vector,其中包含的距离分布的中断点。断点提供(n.class 1),即,与一个开始和结束点的列表。默认值:break.pts=NULL。
参数:cutoff
For the second half of the distance classes, cutoff = TRUE limits the correlogram to the distance classes that include all points. If cutoff = FALSE, the correlogram includes all distance classes.
对于下半年的距离班,cutoff = TRUE限制的相关图类,包括所有的点的距离。如果cutoff = FALSE,相关图包括所有的距离班。
参数:r.type
Type of correlation in calculation of the Mantel statistic. Default: r.type="pearson". Other choices are r.type="spearman" and r.type="kendall", as in functions cor and mantel.
类型的相关计算中的Mantel统计量。默认值:r.type="pearson"。其他的选择r.type="spearman"和r.type="kendall",在功能cor和mantel。
参数:nperm
Number of permutations for the tests of significance. Default: nperm=999. For large data files, permutation tests are rather slow.
为显着性检验的排列数。默认值:nperm=999。对于大型数据文件,置换测试是相当缓慢的。
参数:mult
Correct P-values for multiple testing. The correction methods are "holm" (default), "hochberg", "sidak", and other methods available in the p.adjust function: "bonferroni" (best known, but not recommended because it is overly conservative), "hommel", "BH", "BY", "fdr", and "none".
正确的P的多个测试值。修正的方法是"holm"(默认),"hochberg","sidak",和其他p.adjust功能的方法:"bonferroni"(最有名的,但不建议因为它过于保守),"hommel","BH","BY","fdr"和"none"。
参数:progressive
Default: progressive=TRUE for progressive correction of multiple-testing, as described in Legendre and Legendre (1998, p. 721). Test of the first distance class: no correction; second distance class: correct for 2 simultaneous tests; distance class k: correct for k simultaneous tests. progressive=FALSE: correct all tests for n.class simultaneous tests.
默认值:progressive=TRUE逐步修正多个测试,因为在勒让德和勒让德(1998年,第721页)。测试距离第一类:没有改正;距离第二类:同步测试正确的距离k类:正确的k同步测试。 progressive=FALSE:纠正n.class同步测试的所有测试。
参数:x
Output of mantel.correlog.
输出的mantel.correlog。
参数:alpha
Significance level for the points drawn with black symbols in the correlogram. Default: alpha=0.05.
黑色符号中的相关图绘制的点的显着性水平。默认值:alpha=0.05。
参数:...
Other parameters passed from other functions.
其他参数传递等功能。
Details
详细信息----------Details----------
A correlogram is a graph in which spatial correlation values are plotted, on the ordinate, as a function of the geographic distance classes among the study sites along the abscissa. In a Mantel correlogram, a Mantel correlation (Mantel 1967) is computed between a multivariate (e.g. multi-species) distance matrix of the user's choice and a design matrix representing each of the geographic distance classes in turn. The Mantel statistic is tested through a permutational Mantel test performed by vegan's mantel function.
甲相关图是一个曲线图,在其中的空间相关性的值绘制在纵坐标上,作为沿横坐标的研究地点之间的GEO距离,类的函数。在曼特尔相关图,的曼特尔相关(曼特尔1967)计算多变量(例如,多品种)之间的距离矩阵,用户的选择和设计矩阵的GEO距离,类反过来。的的曼特尔统计通过一个permutational的vegan的mantel函数进行Mantel检验测试。
When a correction for multiple testing is applied, more permutations are necessary than in the no-correction case, to obtain significant p-values in the higher correlogram classes.
当多个测试被施加的校正,需要更多的排列是比在没有校正的情况下,在较高的相关图类,得到显着的p值。
The print.mantel.correlog function prints out the
print.mantel.correlog函数打印出
值----------Value----------
参数:mantel.res
A table with the distance classes as rows and the class indices, number of distances per class, Mantel statistics (computed using Pearson's r, Spearman's r, or Kendall's tau), and p-values as columns. A positive Mantel statistic indicates positive spatial correlation. An additional column with p-values corrected for multiple testing is added unless mult="none".
一个表的距离行和类指数类,每类的距离,的曼特尔统计数据(计算采用Pearson Spearman的R,R,或Kendall的tau),和P-值列的数目。一个积极的曼特尔统计数字表明积极的空间相关性。 p值纠正多个测试一个附加列,除非mult="none"。
参数:n.class
The n umber of distance classes.
长的数距离班。
参数:break.pts
The break points provided by the user or computed by the program.
由用户提供的,或由程序计算的中断点。
参数:mult
The name of the correction for multiple testing. No correction: mult="none".
的名称的多个测试的校正。没有修正:mult="none"。
参数:progressive
A logical (TRUE, FALSE) value indicating whether or not a progressive correction for multiple testing was requested.
一个逻辑(TRUE,FALSE)值,该值指示是否一个渐进的调整多个测试要求。
参数:n.tests
The number of distance classes for which Mantel tests have been computed and tested for significance.
其中曼特尔测试已被计算并进行显着性测试距离类的数目。
参数:call
The function call.
函数调用。
(作者)----------Author(s)----------
Pierre Legendre, Universit茅 de Montr茅al
参考文献----------References----------
edition. Elsevier Science BV, Amsterdam.
regression approach. Cancer Res. 27: 209-220.
extension of spatial correlograms to two dimensions. Syst. Zool. 35: 608-617.
processes. 29-43 in: E. Diday et al. [eds.] Data analysis and informatics, IV. North-Holland, Amsterdam.
实例----------Examples----------
# Mite data available in "vegan"[螨数据可在“素食主义者”]
data(mite)
data(mite.xy)
mite.hel <- decostand(mite, "hellinger")
# Detrend the species data by regression on the site coordinates[Detrend种网站上的坐标数据,通过回归]
mite.hel.resid <- resid(lm(as.matrix(mite.hel) ~ ., data=mite.xy))
# Compute the detrended species distance matrix[计算去趋势物种的距离矩阵]
mite.hel.D = dist(mite.hel.resid)
# Compute Mantel correlogram with cutoff, Pearson statistic[与截止,皮尔逊统计计算曼特尔相关图]
mite.correlog = mantel.correlog(mite.hel.D, XY=mite.xy, nperm=49)
summary(mite.correlog)
mite.correlog
# or: print(mite.correlog)[或打印(mite.correlog)]
# or: print.mantel.correlog(mite.correlog)[或:print.mantel.correlog(mite.correlog)]
plot(mite.correlog)
# Compute Mantel correlogram without cutoff, Spearman statistic[计算曼特尔没有截止,Spearman等级相关图统计]
mite.correlog2 = mantel.correlog(mite.hel.D, XY=mite.xy, cutoff=FALSE,
r.type="spearman", nperm=49)
summary(mite.correlog2)
mite.correlog2
plot(mite.correlog2)
# NOTE: 'nperm' argument usually needs to be larger than 49.[注:的“nperm”的说法,通常需要大于49。]
# It was set to this low value for demonstration purposes.[这样低的值设置为示范的目的。]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|