找回密码
 注册
查看: 362|回复: 0

R语言 vcdExtra包 Yamaguchi87()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 14:45:21 | 显示全部楼层 |阅读模式
Yamaguchi87(vcdExtra)
Yamaguchi87()所属R语言包:vcdExtra

                                         Occupational Mobility in Three Countries
                                         在三个国家的职业流动

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Yamaguchi (1987) presented this three-way frequency table, cross-classifying occupational categories of sons and fathers in the United States, United Kingdom and Japan.  This data set has become a classic for models comparing two-way mobility tables across layers corresponding to countries, groups or time (e.g., Goodman and Hout, 1998; Xie, 1992).
山口(1987)提出了这三个方法,频率表,跨职业类别分类的儿子和父亲在美国,英国和日本。该数据集已成为经典之作比较的型号对应的国家,团体或时间(例如,古德曼和豪特,1998年,谢,1992),跨层的双向流动表。

The US data were derived from the 1973 OCG-II survey; those for the UK from the 1972 Oxford Social Mobility Survey; those for Japan came from the 1975 Social Stratification and Mobility survey. They pertain to men aged 20-64.
OCG-II从1973年的调查数据来源于美国,英国从1972年的牛津大学社会流动调查,日本从1975年的社会分层与流动调查。它们涉及到男性年龄20-64。


用法----------Usage----------


data(Yamaguchi87)



格式----------Format----------

A frequency data frame with 75 observations on the following 4 variables. The total sample size is 28887.
一种频率的数据框与75上的以下4个变量的观察。总样本数为28887。




Son a factor with levels UpNM LoNM UpM LoM Farm
Son的一个因素水平UpNMLoNMUpMLoMFarm




Father a factor with levels UpNM LoNM UpM LoM Farm
Father的一个因素水平UpNMLoNMUpMLoMFarm




Country a factor with levels US UK Japan
Country的一个因素水平USUKJapan




Freq a numeric vector
Freq一个数值向量


Details

详细信息----------Details----------

Five status categories – upper and lower nonmanuals (UpNM, LoNM),  upper and lower manuals (UpM, LoM),  and Farm) are used for both fathers' occupations and sons' occupations.
五种状态 - 上下nonmanuals(UpNM,LoNM),上下手册(UpM,LoM),和Farm)是用来两个父亲的职业和儿子的职业。

Upper nonmanuals are professionals, managers, and officials; lower nonmanuals are proprietors, sales workers, and clerical workers; upper manuals are skilled workers; lower manuals are semi-skilled and unskilled nonfarm workers; and farm workers are farmers and farm laborers.
上nonmanuals是专业人士,经理和政府官员,低nonmanuals的所有人,销售人员,文员,上手册的技术工人;较低的手册是半熟练和非熟练非农工人和农场工人,农民和雇农。

Some of the models from Xie (1992), Table 1, are fit in demo(yamaguchi-xie).
有些谢(1992),见表1的模型,适合在demo(yamaguchi-xie)。


源----------Source----------

Yamaguchi, K. (1987).  Models for comparing mobility tables: toward parsimony and substance,  American Sociological Review, vol. 52 (Aug.), 482-494, Table 1
山口,K.(1987)。模型比较流动表对简约和物质的,美国社会学评论,第一卷。 52(8月),482-494,表1


参考文献----------References----------

Statistical Methods and Graphical Displays for Analyzing How the Association Between Two Qualitative Variables Differs Among Countries, Among Groups, Or Over Time:  A Modified Regression-Type Approach. Sociological Methodology, 28 (1), 175-230.
The log-multiplicative layer effect model for comparing mobility tables. American Sociological Review, 57 (June), 380-395.

实例----------Examples----------


data(Yamaguchi87)
# reproduce Table 1[再现表1]
structable(~ Father + Son + Country, Yamaguchi87)
# create table form[创建表格的形式]
Yama.tab <- xtabs(Freq ~ Son + Father + Country, data=Yamaguchi87)

# define mosaic labeling_args for convenient reuse in 3-way displays[在3路显示定义马赛克labeling_args方便再用]
largs <- list(rot_labels=c(right=0), offset_varnames = c(right = 0.6), offset_labels = c(right = 0.2),
              set_varnames = c(Son="Son's status", Father="Father's status")
             )

###################################[##################################]
# Fit some models &amp; display mosaics[适合一些模型显示马赛克]
  
# Mutual independence[相互独立]
yama.indep <- glm(Freq ~ Son + Father + Country, data=Yamaguchi87, family=poisson)
anova(yama.indep)

mosaic(yama.indep, ~Son+Father, main="[S][F] ignoring country")
mosaic(yama.indep, ~Country + Son + Father, condvars="Country",
       labeling_args=largs,
       main='[S][F][C] Mutual independence')

# no association between S and F given country ('perfect mobility')[S和F特定国家之间没有关联(“完美的流动性”)]
# asserts same associations for all countries[断言同一协会的所有国家]
yama.noRC <- glm(Freq ~ (Son + Father) * Country, data=Yamaguchi87, family=poisson)
anova(yama.noRC)
mosaic(yama.noRC, ~~Country + Son + Father, condvars="Country",
       labeling_args=largs,
       main="[SC][FC] No [SF] (perfect mobility)")

# ignore diagonal cells[忽略对角线单元的]
yama.quasi <- update(yama.noRC, ~ . + Diag(Son,Father):Country)
anova(yama.quasi)
mosaic(yama.quasi, ~Son+Father, main="Quasi [S][F]")

## see also:[#另参考:]
# demo(yamaguchi-xie)[演示(山口谢)]
##[#]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 12:30 , Processed in 0.022993 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表