找回密码
 注册
查看: 601|回复: 0

R语言 vars包 SVEC()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 14:30:03 | 显示全部楼层 |阅读模式
SVEC(vars)
SVEC()所属R语言包:vars

                                        Estimation of a SVEC
                                         估计一斯威克

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimates an SVEC by utilising a scoring algorithm.  
估计SVEC利用的评分算法。


用法----------Usage----------


SVEC(x, LR = NULL, SR = NULL, r = 1, start = NULL, max.iter = 100,
conv.crit = 1e-07, maxls = 1.0, lrtest = TRUE, boot = FALSE, runs = 100)
## S3 method for class 'svecest'
print(x, digits = max(3, getOption("digits") - 3), ...)



参数----------Arguments----------

参数:x
Object of class "ca.jo"; generated by ca.jo() contained in urca.
类的对象ca.jo,产生的ca.jo()中包含的urca。


参数:LR
Matrix of the restricted long run impact matrix.
受限制的术语运行影响矩阵的矩阵。


参数:SR
Matrix of the restricted contemporaneous impact matrix.
受限制的同期影响矩阵的矩阵。


参数:r
Integer, the cointegration rank of x.   
整,协整的X级。


参数:start
Vector of starting values for γ.   
向量的初始值γ。


参数:max.iter
Integer, maximum number of iteration.
整数,最大迭代次数。


参数:conv.crit
Real, convergence value of algorithm..
真实的,算法的收敛值..


参数:maxls
Real, maximum movement of the parameters between two iterations of the scoring algorithm.
真正的,最大的运动两次迭代之间的得分算法的参数。


参数:lrtest
Logical, over-identification LR test, the result is set to NULL for just-identified system.
逻辑,过度识别LR测试,结果被设置为NULL刚刚发现的系统。


参数:boot
Logical, if TRUE, standard errors of the parameters are computed by bootstrapping. Default is FALSE.
逻辑,如果TRUE,标准的参数计算错误的引导。默认是FALSE。


参数:runs
Integer, number of bootstrap replications.
整数,引导复制。


参数:digits
the number of significant digits to use when printing.
打印时所使用的数量显著数字。


参数:...
further arguments passed to or from other methods.     
进一步的参数传递给其他方法。


Details

详细信息----------Details----------

Consider the following reduced form of a k-dimensional vector error correction model:
考虑以下的一个k维的向量误差修正模型的简化形式:

This VECM has the following MA representation:
这VECM有以下MA表示:

with &Xi; = &beta;_{\perp} (&alpha;_{\perp}'(I_K -     &sum;_{i=1}^{p-1}&Gamma;_i)&beta;_{\perp} )^{-1}&alpha;_{\perp}' and &Xi;^*(L) signifies an infinite-order polynomial in the lag operator with coefficient matrices &Xi;^*_j that tends to zero with increasing size of j.<br>
&Xi; = &beta;_{\perp} (&alpha;_{\perp}'(I_K -     &sum;_{i=1}^{p-1}&Gamma;_i)&beta;_{\perp} )^{-1}&alpha;_{\perp}'和&Xi;^*(L)标志着一个无限阶多项式滞后算子的系数矩阵&Xi;^*_j趋于零,规模日益扩大,j。<BR>

Contemporaneous restrictions on the impact matrix B must be supplied as zero entries in SR and free parameters as NA entries. Restrictions on the long run impact matrix &Xi; B have to be supplied likewise. The unknown parameters are estimated by maximising the concentrated log-likelihood subject to the imposed restrictions by utilising a scoring algorithm on:
当时的限制,影响矩阵B必须提供为零SR和免费NA项参数中的条目。限制从长远来看影响矩阵&Xi; B必须提供同样的。最大的集中利用的评分算法的限制对数似然估计的未知参数:

with \tilde{&Sigma;}_u signifies the reduced form variance-covariance matrix and A is set equal to the identity matrix I_K.
\tilde{&Sigma;}_u表示方差 - 协方差矩阵的简化形式,A设置等于单位矩阵I_K的。

If "start" is not set, then normal random numbers are used as starting values for the unknown coefficients. In case of an overidentified SVEC, a likelihood ratio statistic is computed according to:
如果start没有被设置,那么正常的随机数被用来作为起始未知系数的值。似然比统计在的过度识别斯威克的情况下,根据计算:

with \tilde{&Sigma;}_u^r being the restricted variance-covariance matrix and \tilde{&Sigma;}_u being the variance covariance matrix of the reduced form residuals. The test statistic is distributed as &chi;^2(K*(K+1)/2 - nr), where nr is equal to the number of restrictions.   
与\tilde{&Sigma;}_u^r是受限制的方差 - 协方差矩阵和\tilde{&Sigma;}_u的简化形式残差的方差协方差矩阵。的检验统计量的分布作为&chi;^2(K*(K+1)/2 - nr),其中nr是相等的数目的限制。


值----------Value----------

A list of class "svecest" with the following elements is returned:<br>
列表类的svecest返回包含下列元素:参考


参数:SR
The estimated contemporaneous impact matrix.
估计当时的影响矩阵。


参数:SRse
The standard errors of the contemporaneous impact matrix, if boot = TRUE.
同时期的影响矩阵的标准误差,如果boot = TRUE。


参数:LR
The estimated long run impact matrix.
估计术语运行影响矩阵。


参数:LRse
The standard errors of the long run impact matrix, if boot = TRUE.   
从长远来看影响矩阵的标准误差,如果boot = TRUE。


参数:Sigma.U
The variance-covariance matrix of the reduced form residuals times 100, i.e., &Sigma;_U = A^{-1}BB'A^{-1'}       \times 100.
方差 - 协方差矩阵的还原形式残差100倍,即,&Sigma;_U = A^{-1}BB'A^{-1'}       \times 100。


参数:Restrictions
Vector, containing the ranks of the restricted long run and contemporaneous impact matrices.
矢量,其中包含的限制长远来看,当时的影响矩阵的行列。


参数:LRover
Object of class "htest", holding the Likelihood ratio overidentification test.
对象类的htest,拿着似然比过度识别检验。


参数:start
Vector of used starting values.
使用初始值的向量。


参数:type
Character, type of the SVEC-model.
字符,请键入SVEC模型。


参数:var
The "ca.jo" object "x".  
“ca.jo对象x。


参数:LRorig
The supplied long run impact matrix.
所提供的术语运行影响矩阵。


参数:SRorig
The supplied contemporaneous impact matrix.
提供的同期影响矩阵。


参数:r
Integer, the supplied cointegration rank.
整数,所提供的协整秩。


参数:iter
Integer, the count of iterations.   
整数,迭代计数。


参数:call
The call to SVEC().
call到SVEC()。


(作者)----------Author(s)----------


Bernhard Pfaff



参考文献----------References----------

Econometrics, 2nd edition, Springer, Berlin.
autoregressive modeling and impulse responses, in H. L眉tkepohl and M. Kr盲tzig (editors), Applied Time Series Econometrics, Cambridge University Press, Cambridge.
University Press, Princeton.
Analysis, Springer, New York.

参见----------See Also----------

SVAR, irf, fevd  
SVAR,irf,fevd


实例----------Examples----------


data(Canada)
vecm <- ca.jo(Canada[, c("prod", "e", "U", "rw")], type = "trace", ecdet = "trend", K = 3, spec = "transitory")
SR <- matrix(NA, nrow = 4, ncol = 4)
SR[4, 2] <- 0
SR
LR <- matrix(NA, nrow = 4, ncol = 4)
LR[1, 2:4] <- 0
LR[2:4, 4] <- 0
LR
SVEC(vecm, LR = LR, SR = SR, r = 1, lrtest = FALSE, boot = FALSE)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 16:44 , Processed in 0.023671 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表