Psi(vars)
Psi()所属R语言包:vars
Coefficient matrices of the orthogonalised MA represention
系数矩阵MA“重要orthogonalised
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns the estimated orthogonalised coefficient matrices of the moving average representation of a stable VAR(p) as an array.
稳定的VAR(对)的移动平均表示返回估计orthogonalised的系数矩阵为一个数组。
用法----------Usage----------
## S3 method for class 'varest'
Psi(x, nstep=10, ...)
## S3 method for class 'vec2var'
Psi(x, nstep=10, ...)
参数----------Arguments----------
参数:x
An object of class "varest", generated by VAR(), or an object of class "vec2var", generated by vec2var().
对象,所产生的varest,或对象类的VAR()类vec2var,所产生的vec2var()。
参数:nstep
An integer specifying the number of othogonalised moving error coefficient matrices to be calculated.
一个整数,指定的数量来计算的othogonalised运动误差系数矩阵。
参数:...
Dots currently not used.
点目前未使用。
Details
详细信息----------Details----------
In case that the components of the error process are instantaneously correlated with each other, that is: the off-diagonal elements of the variance-covariance matrix Σ_u are not null, the impulses measured by the Φ_s matrices, would also reflect disturbances from the other variables. Therefore, in practice a Choleski decomposition has been propagated by considering Σ_u = PP' and the orthogonalised shocks \bold{ε}_t = P^{-1}\bold{u}_t. The moving average representation is then in the form of:
在错误过程中的组件的情况下,瞬间彼此相关的,是:元素的方差 - 协方差矩阵的非对角(off-diagonal)Σ_u不为空,Φ_s矩阵测量的冲动,也反映了其他变量的干扰。因此,在实践中Choleski分解传播的考虑Σ_u = PP'和orthogonalised的冲击\bold{ε}_t = P^{-1}\bold{u}_t。的移动平均值表示的形式,然后:
whith Ψ_0 = P and the matrices Ψ_s are computed as Ψ_s = Φ_s P for s = 1, 2, 3, ….
蒙山Ψ_0 = P和矩阵Ψ_s计算Ψ_s = Φ_s Ps = 1, 2, 3, …。
值----------Value----------
An array with dimension (K \times K \times nstep + 1) holding the estimated orthogonalised coefficients of the moving average representation.
一个数组,维度(K \times K \times nstep + 1)保持移动平均表示的估计orthogonalised系数。
注意----------Note----------
The first returned array element is the starting value, i.e., Ψ_0. Due to the utilisation of the Choleski decomposition, the impulse are now dependent on the ordering of the vector elements in \bold{y}_t.
第一个返回的数组元素的初始值,即,Ψ_0。由于利用的Choleski分解,冲动现在依赖于在\bold{y}_t的矢量元素的排序。
(作者)----------Author(s)----------
Bernhard Pfaff
参考文献----------References----------
University Press, Princeton.
Analysis, Springer, New York.
参见----------See Also----------
Phi, VAR, SVAR, vec2var
Phi,VAR,SVAR,vec2var
实例----------Examples----------
data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
Psi(var.2c, nstep=4)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|