estFAmodel(tsfa)
estFAmodel()所属R语言包:tsfa
Estimate a Factor Model
估计因子模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimate an FAmodel.
估计的FAmodel。
用法----------Usage----------
estFAmodel(Sigma, p, n.obs=NA,
est="factanal",
estArgs=list(scores="none", control=list(opt=list(maxit=10000))),
rotation=if(p==1) "none" else "quartimin", rotationArgs=NULL,
GPFargs=list(Tmat=diag(p), normalize=TRUE, eps=1e-5, maxit=1000),
BpermuteTarget=NULL,
factorNames=paste("Factor", seq(p)),
indicatorNames=NULL)
参数----------Arguments----------
参数:Sigma
covariance of the data matrix.
矩阵数据的协方差。
参数:n.obs
integer indication number of observations in the dataset.
整数指示的观测数据集。
参数:p
integer indication number of factors to estimate.
整数指示数估计的因素。
参数:est
name of the estimation function.
估算功能的名称。
参数:estArgs
list of aarguments passed to the estimation function.
列表传递给估算功能aarguments。
参数:rotation
character vector indicating the factor rotation method (see GPArotation for many options).
字符矢量的因素旋转方法(见GPArotation许多选项)。
参数:rotationArgs
list of arguments passed to the rotation method, specifying arguments for the rotation criteria. See GPFoblq.
参数列表,通过旋转方法,指定参数的旋转标准。见GPFoblq。
参数:GPFargs
list of arguments passed to GPFoblq or GPForth for rotation optimization
列表中的参数传递给GPFoblq或GPForth旋转优化
参数:BpermuteTarget
matrix of loadings. If supplied, this is used to permute the order of estimated factors and change signs. (It is for comparison with other results.
矩阵的负荷。如果提供,这是用来重排的顺序估计的因素和变化的迹象。 (这是与其他结果进行比较。
参数:factorNames
vector of strings indicating names of factor series.
向量的字符串表示因子序列的名称。
参数:indicatorNames
vector of strings indicating names of indicator series.
向量的字符串表示指标系列的名称。
Details
详细信息----------Details----------
The default est method and quartimin rotation give parameters using standard (quasi) ML factor analysis (on the correlation matrix and then scaled back). The function factanal with no rotation is used to find the initial (orthogonal) solution. Rotation is then done (by default with quartimin using GPFoblq optimization). factanal always uses the correlation matrix, so standardizing does not affect the solution.
默认est方法和quartimin旋转给使用标准的(准)的ML因素分析(的相关性矩阵,然后缩减)的参数。该函数factanal与没有旋转被用来寻找初始(正交)的解决方案。旋转完成(的使用GPFoblq优化与quartimin默认情况下,)。 factanal总是使用的相关矩阵,所以规范不影响该溶液中。
If rotation is "none" the result of the factanal estimation is not rotated. In this case, to avoid confusion with a rotated solution, the factor covariance matrix Phi is returned as NULL. Another possibility for its value would be the identity matrix, but this is not calculated so NULL avoids confusion.
如果rotation是"none" factanal估计的结果是不旋转的。在这种情况下,与一个旋转的解决方案,以避免混淆,因子协方差矩阵Phi被返回作为NULL。另一种可能性,其值将是单位矩阵,但是这还没有计算所以NULL避免混乱。
The arguments rotation, rotationArgs are used for rotation. The quartimin default uses GPArotation and its default normalize=TRUE, eps=1e-5, maxit=1000, and Tmat=I are passed through the rotation method to GPFoblq.
的参数rotation,rotationArgs是用于旋转。的quartimin默认使用GPArotation的和它的默认normalize=TRUE,eps=1e-5,maxit=1000和Tmat=I是通过旋转方法GPFoblq。
The estimated loadings, Bartlett predictor matrix, etc., are put in the returned FAmodel (see below). The Bartlett factor score coefficient matrix can be calculated as
的估计的负载,巴特利特预测器矩阵,等,被放置在返回的FAmodel(见下文)。巴特利特因子得分系数矩阵可以计算为
or equivalently as
或等价为
The first is simpler because Omega is diagonal, but breaks down with a Heywood case, because Omega is then singular (one or more of its diagonal elements are zero). The second only requires nonsingularity of Sigma. Typically, Sigma is not singular even if Omega is singular. Sigma is calculated from B Phi B' + Omega, where B, Phi, and Omega are the estimated values returned from factanal and rotated. The data covariance could also be used for Sigma. (It returns the same result with this estimation method.)
首先是简单的,这是因为Omega是对角线,但分解具有海沃德壳体,因为Omega然后奇异的(一个或多个它的对角线元素均为零)。第二只需要非奇异的Sigma。通常情况下,Sigma是不是奇异即使Omega是奇异的。 Sigma计算从B Phi B' + Omega,其中B, Phi,和Omega返回factanal和旋转的估计值的。的数据的协方差也可用于Sigma。 (这个估计方法返回相同的结果。)
The returned FAmodel object is a list containing
返回FAmodel对象是一个列表,其中包含
loadings the estimated loadings matrix.
负荷估计载荷矩阵。
Omega the covariance of the idiosyncratic component (residuals).
欧米茄的的特质组件(残差的协方差)。
Phi the covariance of the factors.
披协方差的因素。
LB the Bartlett predictor matrix.
LB巴特利特预测矩阵。
LB.std the standardized Bartlett predictor matrix.
LB.std标准化巴特利特预测矩阵。
estConverged a logical indicating if estimation converged.
estConverged的逻辑表示,如果估计的融合。
rotationConverged a logical indicating if rotation converged.
rotationConverged的逻辑表示,如果旋转融合。
orthogonal a logical indicating if the rotation is orthogonal.
正交的逻辑表示,如果旋转是正交的。
uniquenesses the uniquenesses.
独特性独特性。
call thearguments of the function call.
调用函数调用thearguments。
值----------Value----------
A FAmodel object (see details).
AFAmodel对象(见详情)。
(作者)----------Author(s)----------
Paul Gilbert and Erik Meijer
参考文献----------References----------
Time Series Factor Analaysis with an Application to Measuring Money. Research Report 05F10, University of Groningen, SOM Research School. Available from http://som.eldoc.ub.rug.nl/reports/themeF/2005/05F10/.
参见----------See Also----------
estTSF.ML, rotations, factanal
estTSF.ML,rotations,factanal
实例----------Examples----------
data("WansbeekMeijer", package="GPArotation")
fa.unrotated <- estFAmodel(NetherlandsTV, 2, n.obs=2150, rotation="none" )
fa.varimax <- estFAmodel(NetherlandsTV, 2, n.obs=2150, rotation="Varimax" )
fa.eiv <- estFAmodel(NetherlandsTV, 2, n.obs=2150, rotation="eiv" )
fa.oblimin <- estFAmodel(NetherlandsTV, 2, n.obs=2150, rotation="oblimin" )
cbind(loadings(fa.unrotated), loadings(fa.varimax), loadings(fa.oblimin), loadings(fa.eiv))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|