acf(TSA)
acf()所属R语言包:TSA
Auto- and Cross- Covariance and -Correlation Function Estimation
自相关和互协方差和相关函数估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function is modified from the acf function in the stats package.
此功能被修改acf的功能的统计包中。
用法----------Usage----------
acf(x, lag.max = NULL, type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action = na.fail, demean = TRUE, drop.lag.0 = TRUE, ...)
参数----------Arguments----------
参数:x
a univariate or multivariate (not ccf) numeric time series object or a numeric vector or matrix, or an "acf" object.
(未CCF)的单变量或多变量数字时间序列对象或一个数值向量或矩阵,或“acf的”对象。
参数:lag.max
maximum number of lags at which to calculate the acf. Default is 10*log10(N/m) where N is the number of observations and m the number of series.
滞后计算的ACF的最大数量。默认值是10 * LOG10(N / M),其中N是观察和M系列数数。
参数:type
character string giving the type of acf to be computed. Allowed values are "correlation" (the default), "covariance" or "partial".
字符串给acf将要计算的类型。允许的值是“相关性”(默认值),“协方差”或“部分”。
参数:plot
logical. If TRUE (the default) the acf is plotted.
逻辑。如果是TRUE(默认值)绘制的ACF。
参数:na.action
function to be called to handle missing values. na.pass can be used.
函数的调用,处理缺失值。可以使用na.pass。
参数:demean
logical. Should the covariances be about the sample means?
逻辑。有关样本均值的协方差?
参数:drop.lag.0
logical. Should lag 0 be dropped
逻辑。应落在0被丢弃
参数:...
further arguments to be passed to plot.acf.
进一步的论据要传递给plot.acf的。
值----------Value----------
An object of class "acf", which is a list with the following elements:
对象的类“ACF”,这是一个包含下列元素的列表:
<table summary="R valueblock"> <tr valign="top"><td>lag</td> <td> A three dimensional array containing the lags at which the acf is estimated.</td></tr> <tr valign="top"><td>acf</td> <td> An array with the same dimensions as lag containing the estimated acf.</td></tr> <tr valign="top"><td>type</td> <td> The type of correlation (same as the type argument).</td></tr> <tr valign="top"><td>n.used</td> <td> The number of observations in the time series.</td></tr> <tr valign="top"><td>series</td> <td> The name of the series x.</td></tr> <tr valign="top"><td>snames</td> <td> The series names for a multivariate time series.</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> lag</ TD> <td>一个三维数组,包含滞后的ACF估计。</ TD> </ TR> <tr valign="top"> <TD> acf</ TD> <TD>一个数组,包含的估计的ACF的。</ TD> </ TR> <TR具有相同的尺寸为滞后VALIGN =“”> <TD>type </ TD> <TD>的相关性(相同的类型参数)的类型。</ TD> </ TR> <tr valign="top"> < n.used TD> </ TD> <TD>的若干意见的时间序列。</ TD> </ TR> <tr valign="top"> <TD>series</ TD > <TD>该系列的名称X。</ TD> </ TR> <tr valign="top"> <TD>snames </ TD> <TD>的系列名称的多元时间序列</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Original: Paul Gilbert, Martyn Plummer, B.D. Ripley. Slight modification by Kung-Sik Chan
参考文献----------References----------
<h3>See Also</h3>
实例----------Examples----------
data(rwalk)
model1=lm(rwalk~time(rwalk))
summary(model1)
acf(rstudent(model1),main='')
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|