IBE(TrialSize)
IBE()所属R语言包:TrialSize
Individual Bioequivalence
个体生物等效性
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Consider 2 by 2 crossover design. gamma=delta^2+sigmaD^2+sigmaWT^2-sigmaWR^2-thetaIBE*max(sigma0^2,sigmaWR^2)
考虑2 2交叉设计。 γ=Delta^ 2 + sigmaD ^ 2 + sigmaWT ^ 2-sigmaWR ^ 2 thetaIBE *最大(sigma0 ^ 2,sigmaWR ^ 2)
H0: gamma >= 0
H0:γ= 0
Ha: gamma < 0
哈:γ<0
用法----------Usage----------
IBE(alpha, beta, delta, sigmaD, sigmaWT, sigmaWR, a, b, thetaIBE)
参数----------Arguments----------
参数:alpha
significance level
显着性水平
参数:beta
power = 1-beta
功率= 1-β
参数:delta
delta is the mean difference
Delta的平均差异
参数:sigmaD
sigmaD^2=sigmaBT^2+sigmaBR^2-2*rho*sigmaBT*sigmaBR, sigmaBT^2 is the between-subjects variance in test formulation, sigmaBR^2 is the between-subjects variance in reference formulation
sigmaD ^ 2 = sigmaBT ^ 2 + sigmaBR ^ 2-2 *卢* sigmaBT * sigmaBR,sigmaBT ^ 2是在受试制剂学科之间的差异,sigmaBR ^ 2之间的差异在参比制剂
参数:sigmaWT
sigmaWT^2 is the within-subjects variance in test formulation
sigmaWT ^ 2是内方差制定测试
参数:sigmaWR
sigmaWR^2 is the within-subjects variance in reference formulation
sigmaWR ^ 2是内方差参比制剂
参数:a
Sigma(a,b)=sigmaD^2+a*sigmaWT^2+b*sigmaWR^2 a=0.5 here
Sigma公司(一,二)= sigmaD ^ 2 +一个* sigmaWT ^ 2 + b的* sigmaWR ^ 2 = 0.5这里
参数:b
b=0.5 here
= 0.5这里
参数:thetaIBE
thetaIBE=2.5
thetaIBE = 2.5
参考文献----------References----------
实例----------Examples----------
Example.10.4<-IBE(alpha=0.05, beta=0.2,delta=0, sigmaD=0.2,sigmaWT=0.3,sigmaWR=0.3,a=0.5,b=0.5,thetaIBE=2.5)
Example.10.4
# n=22 IBE reach 0 [N = 22 IBE达到0]
## The function is currently defined as[#功能目前被定义为]
function(alpha, beta,delta, sigmaD,sigmaWT,sigmaWR,a,b,thetaIBE){
Sigma<-function(sigmaD,sigmaWT,sigmaWR,a,b)
{
Sigma=sigmaD^2+a*sigmaWT^2+b*sigmaWR^2
}
U<-function(n,alpha, beta,delta, sigmaD,sigmaWT,sigmaWR,a,b,thetaIBE)
{
U=((abs(delta)+qt(alpha,2*n-2)*Sigma(sigmaD,sigmaWT,sigmaWR,0.5,0.5)*sqrt(2/n)/2)^2-delta^2)^2
+Sigma(sigmaD,sigmaWT,sigmaWR,0.5,0.5)^4*((2*n-2)/qchisq(1-alpha, 2*n-2)-1)^2
+0.5^2*sigmaWT^4*((2*n-2)/qchisq(1-alpha, 2*n-2)-1)^2
+(1.5+thetaIBE)^2*sigmaWR^4*((2*n-2)/qchisq(alpha, 2*n-2)-1)^2
}
gamma=delta^2+sigmaD^2+sigmaWT^2-sigmaWR^2-thetaIBE*sigmaWR^2
for (i in 1:1000){
bound=gamma+sqrt(U(i,alpha, 0.05,delta, sigmaD,sigmaWT,sigmaWR,a,b,thetaIBE))
+sqrt(U(i,alpha, beta,delta, sigmaD,sigmaWT,sigmaWR,a,b,thetaIBE))
print(c(i,bound))
}
}
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|