找回密码
 注册
查看: 679|回复: 0

R语言 spdep包 ME()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 14:41:10 | 显示全部楼层 |阅读模式
ME(spdep)
ME()所属R语言包:spdep

                                        Moran eigenvector GLM filtering
                                         莫兰的特征向量GLM过滤

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The Moran eigenvector filtering function is intended to remove spatial autocorrelation from the residuals of generalised linear models. It uses brute force eigenvector selection to reach a subset of such vectors to be added to the RHS of the GLM model to reduce residual autocorrelation to below the specified alpha value.
莫兰的特征向量过滤功能的目的是要消除空间广义线性模型的残差自相关。它使用蛮力特征向量的选择,以达到这样的向量的一个子集的,要添加到GLM模型的RHS到低于指定的alpha值,以减少残余的自相关。


用法----------Usage----------


ME(formula, data, family = gaussian, weights, offset, listw,
alpha=0.05, nsim=99, verbose=NULL, stdev=FALSE)



参数----------Arguments----------

参数:formula
a symbolic description of the model to be fit
一个象征性的模型来描述是适合


参数:data
an optional data frame containing the variables in the model
一个可选的数据框包含在模型中的变量


参数:family
a description of the error distribution and link function to be used in the model
在模型中使用的误差分布和链接功能的说明


参数:weights
an optional vector of weights to be used in the fitting process
在嵌合过程中要使用的一个可选的矢量的权重


参数:offset
this can be used to specify an a priori known component to be included in the linear predictor during fitting
这可以被用来指定一个先验已知的组件被包括在过程中的线性预测器嵌合


参数:listw
a listw object created for example by nb2listw
例如创建一个listw对象的nb2listw


参数:alpha
used as a stopping rule to choose all eigenvectors up to and including the one with a p-value exceeding alpha
作为一个停止规则选择的所有特征向量,包括一个p值超过阿尔法


参数:nsim
number of permutations for permutation bootstrap for finding p-values
p-值寻找置换自举排列数


参数:verbose
default NULL, use global option value; if TRUE report eigenvectors selected
默认为空,请使用全局选项值,如果特征向量选择TRUE报告


参数:stdev
if TRUE, p-value calculated from bootstrap permutation standard deviate using pnorm with alternative="greater", if FALSE the Hope-type p-value
如果为TRUE,p值计算从引导置换标准差的使用pnorm另类“大”,如果为false,希望型p-值


Details

详细信息----------Details----------

The eigenvectors for inclusion are chosen by calculating the empirical Moran's I values for the initial model plus each of the doubly centred symmetric spatial weights matrix eigenvectors in turn. Then the first eigenvector is chosen as that with the lowest Moran's I value. The procedure is repeated until the lowest remaining Moran's I value has a permutation-based probability value above alpha. The probability value is either Hope-type or based on using the mean and standard deviation of the permutations to calculate ZI based on the stdev argument.
列入选择的初始模型,再加上每双中心对称空间权重矩阵的特征向量依次计算的经验Moran的I值的特征向量。第一被评为最低Moran的I值与特征向量。该过程被重复,直到最低剩余Moran的I值具有置换基的上述α的概率值。的概率值可以是希望的类型或基于使用的平均值和标准偏差的排列计算ZI STDEV参数基于。


值----------Value----------

An object of class ME_res:
类的一个对象ME_res:


参数:selection
a matrix summarising the selection of eigenvectors for inclusion, with columns:     
一个矩阵总结向量列入的选择,与列:

Eigenvectornumber of selected eigenvector  
Eigenvectornumber选定的特征向量

ZIpermutation-based standardized deviate of Moran's I if stdev=TRUE  
ZIpermutation基于标准的偏离的莫兰的我,如果STDEV = TRUE

pr(ZI)probability value: if stdev=TRUE of the permutation-based standardized deviate, if FALSE the Hope-type probability value, in both cases on-sided     The first row is the value at the start of the search  
公关(ZI)的概率值:如果标准偏差= TRUE的置换基于标准化的偏离,如果为FALSE的希望类型的概率值,在这两种情况下双面上的第一行的值是在开始搜索


参数:vectors
a matrix of the selected eigenvectors in order of selection
所选的特征向量的矩阵,以便选择


(作者)----------Author(s)----------


Roger Bivand and Pedro Peres-Neto



参考文献----------References----------

<h3>See Also</h3>

实例----------Examples----------


## Not run: [#不运行:]
example(columbus)
lmbase <- lm(CRIME ~ INC + HOVAL, data=columbus)
lagcol <- SpatialFiltering(CRIME ~ 1, ~ INC + HOVAL, data=columbus,
nb=col.gal.nb, style="W", alpha=0.1, verbose=TRUE)
lagcol
lmlag <- lm(CRIME ~ INC + HOVAL + fitted(lagcol), data=columbus)
anova(lmlag)
anova(lmbase, lmlag)
set.seed(123)
lagcol1 <- ME(CRIME ~ INC + HOVAL, data=columbus, family="gaussian",
listw=nb2listw(col.gal.nb), alpha=0.1, verbose=TRUE)
lagcol1
lmlag1 <- lm(CRIME ~ INC + HOVAL + fitted(lagcol1), data=columbus)
anova(lmlag1)
anova(lmbase, lmlag1)
set.seed(123)
lagcol2 <- ME(CRIME ~ INC + HOVAL, data=columbus, family="gaussian",
listw=nb2listw(col.gal.nb), alpha=0.1, stdev=TRUE, verbose=TRUE)
lagcol2
lmlag2 <- lm(CRIME ~ INC + HOVAL + fitted(lagcol2), data=columbus)
anova(lmlag2)
anova(lmbase, lmlag2)
example(nc.sids)
glmbase <- glm(SID74 ~ 1, data=nc.sids, offset=log(BIR74),
family="poisson")
set.seed(123)
MEpois1 <- ME(SID74 ~ 1, data=nc.sids, offset=log(BIR74),
family="poisson", listw=nb2listw(ncCR85_nb), alpha=0.2, verbose=TRUE)
MEpois1
glmME <- glm(SID74 ~ 1 + fitted(MEpois1), data=nc.sids, offset=log(BIR74),
family="poisson")
anova(glmME, test="Chisq")
anova(glmbase, glmME, test="Chisq")
data(hopkins)
hopkins_part <- hopkins[21:36,36:21]
hopkins_part[which(hopkins_part > 0, arr.ind=TRUE)] <- 1
hopkins.rook.nb <- cell2nb(16, 16, type="rook")
glmbase <- glm(c(hopkins_part) ~ 1, family="binomial")
set.seed(123)
MEbinom1 <- ME(c(hopkins_part) ~ 1, family="binomial",
listw=nb2listw(hopkins.rook.nb), alpha=0.2, verbose=TRUE)
glmME <- glm(c(hopkins_part) ~ 1 + fitted(MEbinom1), family="binomial")
anova(glmME, test="Chisq")
anova(glmbase, glmME, test="Chisq")

## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-18 02:02 , Processed in 0.027761 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表