找回密码
 注册
查看: 419|回复: 0

R语言 spdep包 localmoran.sad()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 14:40:47 | 显示全部楼层 |阅读模式
localmoran.sad(spdep)
localmoran.sad()所属R语言包:spdep

                                        Saddlepoint approximation of local Moran's Ii tests
                                         鞍点逼近的的局部Moran的II测试

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The function implements Tiefelsdorf's application of the Saddlepoint approximation to local Moran's Ii's reference distribution. If the model object is of class "lm", global independence is assumed; if of class "sarlm", global dependence is assumed to be represented by the spatial parameter of that model. Tests are reported separately for each zone selected, and may be summarised using summary.localmoransad. Values of local Moran's Ii agree with those from localmoran(), but in that function, the standard deviate - here the Saddlepoint approximation - is based on the randomisation assumption.
的的功能实现Tiefelsdorf的应用鞍点逼近局部Moran II的参考分布。如果模型对象是类“lm”,全球的独立性假设如果类“sarlm”,假设资源的依赖来表示该模型的空间参数。测试报告选择为每个区域分开,并且可以使用summary.localmoransad总结。值的局部Moran的II同意那些从localmoran(),但在功能,标准的偏离 - 这里的鞍点逼近 - 随机假设的基础上的。


用法----------Usage----------


localmoran.sad(model, select, nb, glist=NULL, style="W",
zero.policy=NULL, alternative="greater", spChk=NULL,
resfun=weighted.residuals, save.Vi=FALSE,
tol = .Machine$double.eps^0.5, maxiter = 1000, tol.bounds=0.0001,
save.M=FALSE, Omega = NULL)

## S3 method for class 'localmoransad'
print(x, ...)
## S3 method for class 'localmoransad'
summary(object, ...)
## S3 method for class 'summary.localmoransad'
print(x, ...)
listw2star(listw, ireg, style, n, D, a, zero.policy=NULL)



参数----------Arguments----------

参数:model
an object of class lm returned by lm (assuming no global spatial autocorrelation), or an object of class sarlm returned by a spatial simultaneous autoregressive model fit (assuming global spatial autocorrelation represented by the model spatial coefficient); weights may be specified in the lm fit, but offsets should not be used
类的一个对象lm返回lm(假设没有全局空间自相关),或一个类的对象sarlm返回一个空间的同时自回归模型拟合(假设所代表的全局空间自相关模型空间系数);权重可以指定lm适合,但偏移量不应该使用


参数:select
an integer vector of the id. numbers of zones to be tested; if missing, all zones
一个整数向量的id。数字区域,以进行测试,如果丢失,所有区域


参数:nb
a list of neighbours of class nb
一个类nb的邻居列表


参数:glist
a list of general weights corresponding to neighbours
一般的权重对应的邻居的列表


参数:style
can take values W, B, C, and S
可以采取的值W,B,C,和S的


参数:zero.policy
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
默认为空,请使用全局选项的值,如果真没有邻居的滞后值的区域分配了零,如果为FALSE分配NA


参数:alternative
a character string specifying the alternative hypothesis, must be one of greater (default), less or two.sided.
一个字符串,指定其他假设,必须有一个更大的(默认),少或two.sided的。


参数:spChk
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()
应的数据向量空间对象的名称进行核对身份完整性,TRUE,否则返回FALSE,默认为空,使用get.spChkOption()


参数:resfun
default: weighted.residuals; the function to be used to extract residuals from the lm object, may be residuals, weighted.residuals, rstandard, or rstudent
默认:weighted.residuals要使用的函数提取残差lm对象,可能是residuals,weighted.residuals,rstandard或rstudent


参数:save.Vi
if TRUE, return the star-shaped weights lists for each zone  tested
如果为TRUE,返回的星形的权重,列表为每个区域测试


参数:tol
the desired accuracy (convergence tolerance) for uniroot
所需的精度(收敛容差)为uniroot


参数:maxiter
the maximum number of iterations for uniroot
最大迭代次数为uniroot


参数:tol.bounds
offset from bounds for uniroot
偏移从uniroot界


参数:save.M
if TRUE, save a list of left and right M products in a list for the conditional tests, or a list of the regression model matrix components
如果为TRUE,左和右的M产品的列表保存在一个列表中的条件测试,或列表中的回归模型矩阵组件


参数:Omega
A SAR process matrix may be passed in to test an alternative hypothesis, for example Omega <- invIrW(listw, rho=0.1); Omega <- tcrossprod(Omega), chol() is taken internally
特别行政区过程矩阵可以传递到测试的假说,例如Omega <- invIrW(listw, rho=0.1); Omega <- tcrossprod(Omega),chol()内服


参数:x
object to be printed
反对要打印


参数:object
object to be summarised
反对总结


参数:...
arguments to be passed through
通过参数


参数:listw
a listw object created for example by nb2listw
例如创建一个listw对象的nb2listw


参数:ireg
a zone number
一区号码


参数:n
internal value depending on listw and style
内部价值根据listw和风格


参数:D
internal value depending on listw and style
内部价值根据listw和风格


参数:a
internal value depending on listw and style
内部价值根据listw和风格


Details

详细信息----------Details----------

The function implements the analytical eigenvalue calculation together with trace shortcuts given or suggested in Tiefelsdorf (2002), partly following remarks by J. Keith Ord, and uses the Saddlepoint analytical solution from Tiefelsdorf's SPSS code.
该函数实现了分析的特征值计算与跟踪的快捷方式给予或建议Tiefelsdorf(2002),J.基思条例“部分下面的备注,并采用了鞍点的解析解从Tiefelsdorf SPSS代码。

If a histogram of the probability values of the saddlepoint estimate for the assumption of global independence is not approximately flat, the assumption is probably unjustified, and re-estimation with global dependence is recommended.
如果直方图的鞍点估计全球独立的假设的概率值约是不平坦的,假设是可能是不合理的,建议重新估计全球依赖。

No n by n matrices are needed at any point for the test assuming no global dependence, the star-shaped weights matrices being handled as listw lists. When the test is made on residuals from a spatial regression, taking a global process into account. n by n matrices are necessary, and memory constraints may be reached for large lattices.
否n×n矩阵,需要在任何点的测试,假设没有全局依赖,星形的权重矩阵被处理为listw列表。当测试从空间回归的残差,一个全球性的考虑。 N×N矩阵是必要的,可能达到大格子和内存的限制。


值----------Value----------

A list with class localmoransad containing "select" lists, each with class moransad with the following components:
类localmoransad包含“选择”列表,列表moransad类以下组件:


参数:statistic
the value of the saddlepoint approximation of the standard deviate of local Moran's Ii.
的值的鞍点近似的标准偏离的局部Moran II。


参数:p.value
the p-value of the test.
的p值的测试。


参数:estimate
the value of the observed local Moran's Ii.
所观察到的局部Moran㈡的值。


参数:alternative
a character string describing the alternative hypothesis.
一个字符串,描述了另一种假设。


参数:method
a character string giving the method used.
一个字符串提供的方法使用。


参数:data.name
a character string giving the name(s) of the data.
给予(s)的数据的名称的字符串。


参数:internal1
Saddlepoint omega, r and u
鞍欧米茄,r和u


参数:df
degrees of freedom
自由度


参数:tau
maximum and minimum analytical eigenvalues
最大和最小的分析的特征值


参数:i
zone tested
区测试


(作者)----------Author(s)----------


Roger Bivand <a href="mailto:Roger.Bivand@nhh.no">Roger.Bivand@nhh.no</a>



参考文献----------References----------

and local Moran's Ii reference distributions and their numerical evaluation.

参见----------See Also----------

localmoran, lm.morantest,
localmoran,lm.morantest,


实例----------Examples----------


eire <- readShapePoly(system.file("etc/shapes/eire.shp", package="spdep")[1],
  ID="names", proj4string=CRS("+proj=utm +zone=30 +units=km"))
eire.nb <- poly2nb(eire)
#data(eire)[数据(爱尔兰)]
e.lm <- lm(OWNCONS ~ ROADACC, data=eire)
e.locmor <- summary(localmoran.sad(e.lm, nb=eire.nb))
e.locmor
mean(e.locmor[,1])
lm.morantest(e.lm, nb2listw(eire.nb))
hist(e.locmor[,"Pr. (Sad)"])
e.wlm <- lm(OWNCONS ~ ROADACC, data=eire, weights=RETSALE)
e.locmorw1 <- summary(localmoran.sad(e.wlm, nb=eire.nb, resfun=weighted.residuals))
e.locmorw1
e.locmorw2 <- summary(localmoran.sad(e.wlm, nb=eire.nb, resfun=rstudent))
e.locmorw2
e.errorsar <- errorsarlm(OWNCONS ~ ROADACC, data=eire,
  listw=nb2listw(eire.nb))
e.errorsar
lm.target <- lm(e.errorsar$tary ~ e.errorsar$tarX - 1)
e.clocmor <- summary(localmoran.sad(lm.target, nb=eire.nb))
e.clocmor
hist(e.clocmor[,"Pr. (Sad)"])

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-18 03:34 , Processed in 0.022402 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表