xsewma.crit(spc)
xsewma.crit()所属R语言包:spc
Compute critical values of simultaneous EWMA control charts (mean and variance charts)
计算临界值的同时EWMA控制图(均值和方差图)
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computation of the critical values (similar to alarm limits) for different types of simultaneous EWMA control charts (based on the sample mean and the sample variance S^2)
计算的临界值(类似报警限值)为不同类型的同时EWMA控制图(根据样本均值和样本方差S^2)
用法----------Usage----------
xsewma.crit(lx, ls, L0, df, mu0=0, sigma0=1, cu=NULL, hsx=0, hss=1, s2.on=TRUE, sided="upper", mode="fixed", Nx=20, Ns=40, qm=30)
参数----------Arguments----------
参数:lx
smoothing parameter lambda of the two-sided mean EWMA chart.
平滑参数λ为双面的平均EWMA图。
参数:ls
smoothing parameter lambda of the variance EWMA chart.
平滑参数lambda值的方差EWMA图。
参数:L0
in-control ARL.
在控制ARL。
参数:mu0
in-control mean.
在控制的意思。
参数:sigma0
in-control standard deviation.
控制标准偏差。
参数:cu
for two-sided (sided="two") and fixed upper control limit (mode="fixed") a value larger than sigma0 has to been given, for all other cases cu is ignored.
双面(sided="two")和固定的控制上限(mode="fixed")的值大于sigma0已被赋予,所有其他情况下cu被忽略。
参数:hsx
so-called headstart (give fast initial response) of the mean chart – do not confuse with the true FIR feature considered in xewma.arl; will be updated.
所谓的领先地位提供快速初始响应的平均图表 - 不要混淆与真正的FIR考虑xewma.arl的功能;将被更新。
参数:hss
headstart (give fast initial response) of the variance chart.
领先地位提供快速初始响应的差异图。
参数:df
actual degrees of freedom, corresponds to batch size.
实际自由度,对应的批次大小。
参数:s2.on
distinguish between S^2 and S chart.
区分S^2和S图。
参数:sided
distinguish between one- and two-sided two-sided EWMA-S^2 control charts by choosing "upper" (upper chart without reflection at cl – the actual value of cl is not used), "Rupper" (upper chart with reflection at cl), "Rlower" (lower chart with reflection at cu), and "two" (two-sided chart), respectively.
区分和双面双面EWMA-S^2控制图的"upper"(上图没有反映cl - cl是实际值未使用),"Rupper"(上图反映在cl)"Rlower"(下图反映在cu),和"two"(2双面图表),分别。
参数:mode
only deployed for sided="two" – with "fixed" an upper control limit (see cu) is set and only the lower is determined to obtain the in-control ARL L0, while with "unbiased" a certain unbiasedness of the ARL function is guaranteed (here, both the lower and the upper control limit are calculated).
只部署sided="two" - "fixed"控制上限(见cu)设置,只有较低的决心获得控制ARL L0,同时与"unbiased"保证一定的无偏的ARL函数(这里的较低和控制上限计算)。
参数:Nx
dimension of the approximating matrix of the mean chart.
的平均图表的近似矩阵的维数。
参数:Ns
dimension of the approximating matrix of the variance chart.
的方差的图表近似矩阵的维数。
参数:qm
number of quadrature nodes used for the collocation integrals.
搭配的积分用于正交节点的数量。
Details
详细信息----------Details----------
xsewma.crit determines the critical values (similar to alarm limits) for given in-control ARL L0 by applying secant rule and using xsewma.arl(). In case of sided="two" and mode="unbiased" a two-dimensional secant rule is applied that also ensures that the maximum of the ARL function for given standard deviation is attained at sigma0. See Knoth (2007) for details and application.
xsewma.crit确定的临界值(类似报警限值)控制ARL L0,应用割线规则,使用xsewma.arl()。箱子sided="two"和mode="unbiased"一个两维的割线规则被施加,也保证,对于给定的标准偏差的函数的最大的ARL达到的sigma0。详情及报名方法,请参阅Knoth(2007)。
值----------Value----------
Returns the critical value of the two-sided mean EWMA chart and
返回双面平均EWMA控制图的临界值,并
(作者)----------Author(s)----------
Sven Knoth
参考文献----------References----------
S. Knoth (2007), Accurate ARL calculation for EWMA control charts monitoring simultaneously normal mean and variance, Sequential Analysis 26, 251-264.
参见----------See Also----------
xsewma.arl for calculation of ARL of simultaneous EWMA charts.
xsewma.arl同时EWMA控制图的ARL计算。
实例----------Examples----------
## Knoth (2007)[#Knoth(2007年)]
## results in Table 2[#结果见表2。]
# batch size n=5, df=n-1[批量大小为n = 5,DF = N-1]
df <- 4
# lambda of mean chart[lambda值的平均图]
lx <- .134
# lambda of variance chart[lambda值的方差图]
ls <- .1
# in-control ARL [在控制ARL]
L0 <- 252.3
# matrix dimensions for mean and variance part[矩阵尺寸的均值和方差的一部分]
Nx <- 25
Ns <- 25
# mode of variance chart[模式的差异图]
SIDED <- "upper"
crit <- xsewma.crit(lx, ls, L0, df, sided=SIDED, Nx=Nx, Ns=Ns)
crit
## output as used in Knoth (2007)[#输出(2007)中所用Knoth]
crit["cx"]/sqrt(df+1)*sqrt(lx/(2-lx))
crit["cu"] - 1
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|