ripras(spatstat)
ripras()所属R语言包:spatstat
Estimate window from points alone
单从估计窗口
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given an observed pattern of points, computes the Ripley-Rasson estimate of the spatial domain from which they came.
鉴于观察到的图案的点,计算雷普利-Rasson估计他们所来自的空间域。
用法----------Usage----------
ripras(x, y=NULL, shape="convex", f)
参数----------Arguments----------
参数:x
vector of x coordinates of observed points, or a 2-column matrix giving x,y coordinates, or a list with components x,y giving coordinates (such as a point pattern object of class "ppp".)
向量的x观察到的点的坐标,或给予x,y坐标,或组件的列表与2列的矩阵x,y给坐标(如类的对象的点图案中的<X >)。
参数:y
(optional) vector of y coordinates of observed points, if x is a vector.
(可选),如果y观测点的坐标向量x是一个矢量。
参数:shape
String indicating the type of window to be estimated: either "convex" or "rectangle".
字符串类型的窗口进行估计:是"convex"或"rectangle"。
参数:f
(optional) scaling factor. See Details.
(可选)的比例因子。查看详细信息。
Details
详细信息----------Details----------
Given an observed pattern of points with coordinates given by x and y, this function computes an estimate due to Ripley and Rasson (1977) of the spatial domain from which the points came.
鉴于观察到的图案的点的坐标由下式给出x和y,这个函数计算的估计由于雷普利和Rasson的(1977),从该点来在空间域。
The points are assumed to have been generated independently and uniformly distributed inside an unknown domain D.
点被假定为已独立地生成,并均匀地分布在一个未知的领域D。
If shape="convex" (the default), the domain D is assumed to be a convex set. The maximum likelihood estimate of D is the convex hull of the points (computed by convexhull.xy). Analogously to the problems of estimating the endpoint of a uniform distribution, the MLE is not optimal. Ripley and Rasson's estimator is a rescaled copy of the convex hull, centred at the centroid of the convex hull. The scaling factor is 1/√{1 - \frac m n} where n is the number of data points and m the number of vertices of the convex hull. The scaling factor may be overridden using the argument f.
如果shape="convex"(默认值),域D被认为是一个凸集。最大似然估计的D的点的凸包(计算方法convexhull.xy)。类似的问题,估计是均匀分布的端点,极大似然估计不是最优的。 ,里普利和Rasson的估计是一个重新调整的副本,围绕质心处的凸包的凸包。比例因子是1/√{1 - \frac m n}其中n是数据点的数量和m顶点的凸包的数量。使用参数f的换算系数可能会被改写。
If shape="rectangle", the domain D is assumed to be a rectangle with sides parallel to the coordinate axes. The maximum likelihood estimate of D is the bounding box of the points (computed by bounding.box.xy). The Ripley-Rasson estimator is a rescaled copy of the bounding box, with scaling factor 1/√{1 - \frac 4 n} where n is the number of data points, centred at the centroid of the bounding box. The scaling factor may be overridden using the argument f.
如果shape="rectangle",域D被假定为一个矩形的边平行于坐标轴。 D的最大似然估计的边界框之分(计算方法bounding.box.xy)。的的里普利-Rasson估计是一个重新调整的副本的边界框,比例因子1/√{1 - \frac 4 n}其中n是数据点的数量,中心在重心的边界框。使用参数f的换算系数可能会被改写。
值----------Value----------
A window (an object of class "owin").
一个窗口(类的一个对象"owin"“)。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参考文献----------References----------
Finding the edge of a Poisson forest. Journal of Applied Probability, 14, 483 – 491.
参见----------See Also----------
owin, as.owin, bounding.box.xy, convexhull.xy
owin,as.owin,bounding.box.xy,convexhull.xy
实例----------Examples----------
x <- runif(30)
y <- runif(30)
w <- ripras(x,y)
plot(owin(), main="ripras(x,y)")
plot(w, add=TRUE)
points(x,y)
X <- rpoispp(15)
plot(X, main="ripras(X)")
plot(ripras(X), add=TRUE)
# two points insufficient[两点不足]
ripras(c(0,1),c(0,0))
# triangle[三角形]
ripras(c(0,1,0.5), c(0,0,1))
# three collinear points[三点共线点]
ripras(c(0,0,0), c(0,1,2))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|