rDiggleGratton(spatstat)
rDiggleGratton()所属R语言包:spatstat
Perfect Simulation of the Diggle-Gratton Process
完美的模拟Diggle格拉顿工艺
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generate a random pattern of points, a simulated realisation of the Diggle-Gratton process, using a perfect simulation algorithm.
生成点,Diggle格拉顿过程的模拟实现,使用一个完美的模拟算法的随机图案。
用法----------Usage----------
rDiggleGratton(beta, delta, rho, kappa=1, W = owin())
参数----------Arguments----------
参数:beta
intensity parameter (a positive number).
强度参数(正数)。
参数:delta
hard core distance (a non-negative number).
硬核的距离(一个非负号)。
参数:rho
interaction range (a number greater than delta).
互动范围内(数大于delta)。
参数:kappa
interaction exponent (a non-negative number).
相互作用指数(一个非负的数)。
参数:W
window (object of class "owin") in which to generate the random pattern. Currently this must be a rectangular window.
窗口(对象类"owin")在其中生成的随机模式。目前,这必须是一个矩形窗口。
Details
详细信息----------Details----------
This function generates a realisation of the Diggle-Gratton point process in the window W using a "perfect simulation" algorithm.
这个函数生成一个,Diggle格拉顿点的过程中实现窗口W使用一个“完美的模拟算法。
Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with pair potential h(t) of the form
Diggle和格拉顿(1984年,页208-210)对潜在h(t)的形式介绍了对相互作用点的过程
with h(t) = 0 for t < delta and h(t) = 1 for t > rho. Here delta, rho and kappa are parameters.
h(t) = 0t < delta和h(t) = 1t > rho。这是delta,rho和kappa参数。
Note that we use the symbol kappa where Diggle and Gratton (1984) use beta, since in spatstat we reserve the symbol beta for an intensity parameter.
注意,我们使用的符号kappa其中Diggle和格拉顿(1984)使用beta,因为在spatstat:我们保留的象征beta的强度参数。
The parameters must all be nonnegative, and must satisfy delta <= rho.
参数必须是非负的,必须满足delta <= rho。
The simulation algorithm used to generate the point pattern is "dominated coupling from the past" as implemented by Berthelsen and Moller (2002, 2003). This is a "perfect simulation" or "exact simulation" algorithm, so called because the output of the algorithm is guaranteed to have the correct probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose output is only approximately correct).
算法的仿真,用于生成的点图案是“主导从过去的实施Berthelsen和Moller(2002年,2003年)的耦合。这是一个“完美的模拟”或“精确模拟算法,所谓的,因为输出的算法是保证有正确的概率分布完全相同(不同的Metropolis-Hastings算法,其使用rmh,其输出是大约只有正确)。
There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs, an error message will be generated.
有一个微小的机会,该算法将空间用完之前,它已经终止。如果发生这种情况,将产生一条错误消息。
值----------Value----------
A point pattern (object of class "ppp").
点模式(类的对象"ppp")。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
based on original code for the Strauss process by
Kasper Klitgaard Berthelsen.
参考文献----------References----------
A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical Society 33, 351-367.
Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of Statistics 30, 549-564.
Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193 – 212.
Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC.
参见----------See Also----------
rmh, DiggleGratton, rStrauss, rHardcore.
rmh,DiggleGratton,rStrauss,rHardcore。
实例----------Examples----------
X <- rDiggleGratton(50, 0.02, 0.07)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|