找回密码
 注册
查看: 252|回复: 0

R语言 spatstat包 markconnect()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 13:45:03 | 显示全部楼层 |阅读模式
markconnect(spatstat)
markconnect()所属R语言包:spatstat

                                         Mark Connection Function
                                         马克连接功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimate the marked connection function of a multitype point pattern.
估计多类型点图案标记的连接功能。


用法----------Usage----------


markconnect(X, i, j, r=NULL,
         correction=c("isotropic", "Ripley", "translate"),
         method="density", ..., normalise=FALSE)



参数----------Arguments----------

参数:X
The observed point pattern. An object of class "ppp" or something acceptable to as.ppp.   
观测点的模式。类的一个对象"ppp"或接受的as.ppp的东西。


参数:i
Number or character string identifying the type (mark value) of the points in X from which distances are measured.  
数字或字符串识别的类型(标记值)X距离的测量点。


参数:j
Number or character string identifying the type (mark value) of the points in X to which distances are measured.  
数字或字符串识别的类型(标记值)中的点X距离的测量。


参数:r
numeric vector. The values of the argument r at which the mark connection function p[ij](r) should be evaluated. There is a sensible default.  
数字矢量。的参数的值r的标记连接功能p[ij](r)应该进行评估。有一个合理的默认。


参数:correction
A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.  
字符向量含有任何选择的选项"isotropic","Ripley"或"translate"。指定,边缘校正(S)。


参数:method
A character vector indicating the user's choice of density estimation technique to be used. Options are "density",  "loess", "sm" and "smrep".  
要使用的字符向量表示用户选择的密度估计技术。选项"density","loess","sm"和"smrep"。


参数:...
Arguments passed to the density estimation routine (density, loess or sm.density) selected by method.  
传递参数的密度估计程序(density,loess或sm.density)选择method。


参数:normalise
If TRUE, normalise the pair connection function by dividing it by p[i]*p[j], the estimated probability that randomly-selected points will have marks i and j.  
如果TRUE,对连接功能标准化由除以p[i]*p[j],估计将有概率随机选择的点标记i和j。


Details

详细信息----------Details----------

The mark connection function p[i,j](r) of a multitype point process X is a measure of the dependence between the types of two  points of the process a distance r apart.
标记连接功能p[i,j](r)的多类型的点过程X的是一个衡量的依赖之间的距离r除了两个点的过程。

Informally p[i,j](r) is defined as the conditional probability, given that there is a point of the process at a location u and another point of the process at a location v separated by a distance ||u-v|| = r, that the first point is of type i and the second point is of type j. See Stoyan and Stoyan (1994).
非正式p[i,j](r)被定义为的条件概率,给定的过程中,有一个点的位置u和另一点的位置处的过程v的距离<分离X>,第一点是类型||u-v|| = r和第二点是类型i的。见斯托扬和斯托扬(1994)。

If the marks attached to the points of X are independent and identically distributed, then p[i,j](r) =  p[i]p[j] where p[i] denotes the probability that a point is of type i. Values larger than this, p[i,j](r) >  p[i]p[j], indicate positive association between the two types, while smaller values indicate negative association.
如果标记点的X是独立同分布的,那么p[i,j](r) =  p[i]p[j]其中p[i]表示一个点的概率是类型i。值大于这个值,p[i,j](r) >  p[i]p[j],表明这两种类型之间的正相关,而较小的值表示的负相关。

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a multitype point pattern (a marked point pattern with factor-valued marks).
参数X必须是点模式(类的对象"ppp")或任何数据到as.ppp是可以接受的。它必须是一个多类型的点模式(一个显着因素值的标记点模式)。

The argument r is the vector of values for the distance r at which p[i,j](r) is estimated. There is a sensible default.
参数r是矢量的距离r,p[i,j](r)估计值。有一个合理的默认。

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)  random spatial point process in the plane, observed through a bounded window. The window (which is specified in X as X$window) may have arbitrary shape.
此算法假定X可以被视为一个实现了一个固定的(的空间均匀)随机空间点在飞机上,观察到有界的窗口。窗口(中指定XX$window的)可以有任意形状的。

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections implemented here are
边缘效应产生的偏差的处理中相同的方式,当在Kest。这里实现的边缘修正




isotropic/Ripley Ripley's isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks).
各向同性/ Ripley旅游Ripley的各向同性修正(见里普利,1988; Ohser,1983年)。实现此方法仅适用于矩形和多边形窗口(而不是二进制口罩)。




translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.
翻译的翻译的校正(Ohser,1983)。实现所有窗口的几何形状,但速度缓慢复杂的Windows。

Note that the estimator assumes the process is stationary (spatially homogeneous).
请注意,估计假设的过程是平稳的(空间均匀)。

The mark connection function is estimated using density estimation techniques. The user can choose between
标记连接功能的使用密度估计技术估计。用户可以选择

which uses the standard kernel density estimation routine density, and works only for evenly-spaced r values;
它使用标准的内核密度估计程序density,仅适用于均匀分布的r值;

which uses the function loess in the package modreg;
使用功能loess包中的modreg;

which uses the function sm.density in the package sm and is extremely slow;
使用功能sm.density包中的sm和极其缓慢;

which uses the function sm.density in the package sm and is relatively fast, but may require manual control of the smoothing parameter hmult.
使用该函数sm.density,软件包中sm和是比较快的,但可能需要手动控制的平滑参数hmult。


值----------Value----------

An object of class "fv" (see fv.object).
类的一个对象"fv"(见fv.object)。

Essentially a data frame containing numeric columns
本质上是一个数据框包含数字的列


参数:r
the values of the argument r  at which the mark connection function p[i,j](r) has been  estimated  
的参数的值r标记连接功能p[i,j](r)已经估计


参数:theo
the theoretical value of p[i,j](r) when the marks attached to different points are independent  
p[i,j](r)是独立的连接到不同的点的标记时的理论值

together with a column or columns named  "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function p[i,j](r) obtained by the edge corrections named.
连同一列或多列名为"iso"和/或"trans",根据选定的边修正。这些列包含的功能p[i,j](r)命名的边缘修正的估计。


(作者)----------Author(s)----------


Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>




参考文献----------References----------

Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons.

参见----------See Also----------

Multitype pair correlation pcfcross and multitype K-functions Kcross, Kdot.
多类型,对相关pcfcross和多类型K-函数Kcross,Kdot。

Use alltypes to compute the mark connection functions between all pairs of types.
使用alltypes计算的所有类型的双标记之间的连接功能。

Mark correlation markcorr and  mark variogram markvario for numeric-valued marks.
马克相关markcorr和“标志变异函数markvario为数字值的标记。


实例----------Examples----------


    # Hughes' amacrine data[休斯的无长突单元的数据]
    # Cells marked as 'on'/'off'[单元标记为“ON”/“关闭”]
    data(amacrine)
    M <- markconnect(amacrine, "on", "off")
    plot(M)

    # Compute for all pairs of types at once[在一次计算所有类型的对]
    plot(alltypes(amacrine, markconnect))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-15 23:28 , Processed in 0.025152 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表