找回密码
 注册
查看: 423|回复: 0

R语言 spatstat包 localK()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 13:43:43 | 显示全部楼层 |阅读模式
localK(spatstat)
localK()所属R语言包:spatstat

                                        Neighbourhood density function
                                         邻里密度函数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Computes the neighbourhood density function, a local version of the K-function or L-function, defined by Getis and Franklin (1987).
计算邻里密度函数,一个当地版本的K功能或L功能,定义的G系数和富兰克林(1987)。


用法----------Usage----------


  localK(X, ..., correction = "Ripley", verbose = TRUE, rvalue=NULL)
  localL(X, ..., correction = "Ripley", verbose = TRUE, rvalue=NULL)



参数----------Arguments----------

参数:X
A point pattern (object of class "ppp").
点模式(类的对象"ppp")。


参数:...
Ignored.
忽略。


参数:correction
String specifying the edge correction to be applied. Options are "none", "translate", "Ripley", "isotropic" or "best". Only one correction may be specified.  
字符串,用于指定要应用的边缘校正。选项"none","translate","Ripley","isotropic"或"best"。仅可指定一个校正。


参数:verbose
Logical flag indicating whether to print progress reports during the calculation.  
逻辑的标志,表示是否打印在计算过程中的进度报告。


参数:rvalue
Optional. A single value of the distance argument r at which the function L or K should be computed.  
可选。一个单一的距离参数值r函数L或K应计算。


Details

详细信息----------Details----------

The command localL computes the neighbourhood density function, a local version of the L-function (Besag's transformation of Ripley's K-function) that was proposed by Getis and Franklin (1987). The command localK computes the corresponding local analogue of the K-function.
命令localL计算邻里密度函数的本地版本的L功能(Besag的改造里普利K功能),G系数和富兰克林(1987)提出的。命令localK计算K函数对应的本地类似物。

Given a spatial point pattern X, the neighbourhood density function L[i](r) associated with the ith point in X is computed by
给定一个空间点格局X,邻里密度函数L[i](r)与i个点X的计算方法

where the sum is over all points j != i that lie within a distance r of the ith point,  a is the area of the observation window, n is the number of points in X, and e[i,j] is an edge correction term (as described in Kest). The value of L[i](r) can also be interpreted as one of the summands that contributes to the global estimate of the L function.
的总和是所有点j != i的谎言的距离内r的i个点,a是该区域的观察窗,n点的数量在X,e[i,j]的的边缘修正项(如在Kest)。 L[i](r)的值,也可以被解释为一体,有助于到全局估计L功能的被加数。

By default, the function L[i](r) or K[i](r) is computed for a range of r values for each point i. The results are stored as a function value table (object of class "fv") with a column of the table containing the function estimates for each point of the pattern X.
默认情况下,功能L[i](r)或K[i](r)计算的范围r值,每个点i。结果被存储为一个函数值表(对象类"fv")与包含该函数的表的列的估计,对每个点的图案X。

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only be computed for this value of r, and the results will be returned as a numeric vector, with one entry of the vector for each point of the pattern X.
另外,如果参数rvalue是给定的,它是一个单一的数字,那么该函数将只被计算此值的r,将返回的结果为一个数值向量,一个输入矢量的每个点的图案X。

Inhomogeneous counterparts of localK and localL are computed by localKinhom and localLinhom.
非均匀同行localK和localLlocalKinhom和localLinhom计算的。


值----------Value----------

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point pattern.
如果rvalue,给出的结果是一个数值向量的长度相等的点图案中的点的数量。

If rvalue is absent, the result is  an object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially a data frame containing columns
rvalue如果是不存在的,其结果是类的一个对象"fv",fv.object,它可以绘制直接使用plot.fv的。本质上是一个数据框包含多个列


参数:r
the vector of values of the argument r  at which the function K has been  estimated  
的参数的值的矢量r在哪些函数K已估计


参数:theo
the theoretical value K(r) = pi * r^2 or L(r)=r for a stationary Poisson process  
K(r) = pi * r^2或L(r)=r的平稳泊松过程的理论值

together with columns containing the values of the neighbourhood density function for each point in the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo values.
连同含有模式中的每个点的邻域密度函数的值的列。列i对应的i个点。最后两列包含r和theo值。


(作者)----------Author(s)----------


Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>




参考文献----------References----------

Second-order neighbourhood analysis of mapped point patterns. Ecology 68, 473&ndash;477.

参见----------See Also----------

Kest, Lest, localKinhom, localLinhom.
Kest,Lest,localKinhom,localLinhom。


实例----------Examples----------


  data(ponderosa)
  X <- ponderosa

  # compute all the local L functions[计算所有的L函数]
  L <- localL(X)

  # plot all the local L functions against r[绘制所有的L函数反对研究]
  plot(L, main="local L functions for ponderosa", legend=FALSE)

  # plot only the local L function for point number 7[图只有本地L功能点7号]
  plot(L, iso007 ~ r)
  
  # compute the values of L(r) for r = 12 metres[L相关(r)的值计算为r = 12米]
  L12 <- localL(X, rvalue=12)

  # Spatially interpolate the values of L12[空间内插的值与L12]
  # Compare Figure 5(b) of Getis and Franklin (1987)[比较图5(b)G系数和富兰克林(1987)]
  X12 <- X %mark% L12
  Z <- smooth.ppp(X12, sigma=5, dimyx=128)

  plot(Z, col=topo.colors(128), main="smoothed neighbourhood density")
  contour(Z, add=TRUE)
  points(X, pch=16, cex=0.5)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-15 23:11 , Processed in 0.022019 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表