make.stochastic(sna)
make.stochastic()所属R语言包:sna
Make a Graph Stack Row, Column, or Row-column Stochastic
图形堆栈的行,列或行列随机
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns a graph stack in which each adjacency matrix in dat has been normalized to row stochastic, column stochastic, or row-column stochastic form, as specified by mode.
返回的曲线图,其中每个邻接矩阵在dat已被归一化到排随机,列随机,或行 - 列随机形式,所指定的mode栈。
用法----------Usage----------
make.stochastic(dat, mode="rowcol", tol=0.005,
maxiter=prod(dim(dat)) * 100, anneal.decay=0.01, errpow=1)
参数----------Arguments----------
参数:dat
a collection of input graphs.
输入图的集合。
参数:mode
one of “row,” “col,” or “rowcol”.
之一的“行”,“列”或“rowcol”。
参数:tol
tolerance parameter for the row-column normalization algorithm.
归一化算法的行 - 列公差参数。
参数:maxiter
maximum iterations for the rwo-column normalization algorithm.
最大迭代的RWO列的归一化算法。
参数:anneal.decay
probability decay factor for the row-column annealer.
行 - 列退火炉的概率的衰减因子。
参数:errpow
power to which absolute row-column normalization errors should be raised for the annealer (i.e., the penalty function).
权力绝对行列标准化错误,应退火(即罚函数)提出。
Details
详细信息----------Details----------
Row and column stochastic matrices are those whose rows and columns sum to 1 (respectively). These are quite straightforwardly produced here by dividing each row (or column) by its sum. Row-column stochastic matrices, by contrast, are those in which each row and each column sums to 1. Here, we try to produce row-column stochastic matrices whose values are as close in proportion to the original data as possible by means of an annealing algorithm. This is probably not optimal in the long term, but the results seem to be consistent where row-column stochasticization of the original data is possible (which it is not in all cases).
行和列的随机矩阵的行和列的总和为1(分别)。这些都是很直截了当地在这里,将每行(或列)的总和。行 - 列的随机矩阵,则相反,是那些其中的每一行和每一列的总和为1。在这里,我们尝试以产生行 - 列的随机矩阵值尽可能接近的比例尽可能通过退火算法的原始数据。从长远来看,这可能是不是最佳的,但结果似乎是一致的行列stochasticization的原始数据是可能的(它是不是在所有情况下)。
值----------Value----------
The stochasticized adjacency matrices
stochasticized的邻接矩阵
警告----------Warning ----------
Rows or columns which sum to 0 in the original data will generate undefined results. This can happen if, for instance, your input graphs contain in- or out-isolates.
在原始数据总结为0的行或列将产生不确定的结果。这可能发生,例如,如果你输入图包含了菌株。
(作者)----------Author(s)----------
Carter T. Butts <a href="mailto:buttsc@uci.edu">buttsc@uci.edu</a>
实例----------Examples----------
#Generate a test matrix[生成一个测试矩阵]
g<-rgraph(15)
#Make it row stochastic[它行随机]
make.stochastic(g,mode="row")
#Make it column stochastic[它列随机]
make.stochastic(g,mode="col")
#(Try to) make it row-column stochastic[(尝试)行 - 列随机]
make.stochastic(g,mode="rowcol")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|