fitXYCurve.matrix(aroma.light)
fitXYCurve.matrix()所属R语言包:aroma.light
Fitting a smooth curve through paired (x,y) data
拟合流畅的曲线通过配对(X,Y)数据
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fitting a smooth curve through paired (x,y) data.
拟合流畅的曲线通过配对(X,Y)数据。
用法----------Usage----------
参数----------Arguments----------
参数:X
An Nx2 matrix where the columns represent the two channels to be normalized.
一个的NX2matrix列代表两个渠道进行标准化。
参数:weights
If NULL, non-weighted normalization is done. If data-point weights are used, this should be a vector of length N of data point weights used when estimating the normalization function.
如果NULL,非加权标准化完成。如果使用的数据点的权重,这应该是一个长度为N的数据点的权重vector估计标准化的功能时使用。
参数:typeOfWeights
A character string specifying the type of weights given in argument weights.
一个character字符串,指定类型参数weights给定的权重。
参数:method
character string specifying which method to use when fitting the intensity-dependent function. Supported methods: "loess" (better than lowess), "lowess" (classic; supports only zero-one weights), "spline" (more robust than lowess at lower and upper intensities; supports only zero-one weights), "robustSpline" (better than spline).
character字符串指定装修时使用的强度依赖的函数的方法。支持的方法:"loess"(优于LOWESS),"lowess"(经典;只支持零一重),"spline"(LOWESS在上下的强度超过健壮;支持零1权重),"robustSpline"(比样条)。
参数:bandwidth
A double value specifying the bandwidth of the estimator used.
一个double值,指定所使用的估计带宽。
参数:satSignal
Signals equal to or above this threshold will not be used in the fitting.
等于或高于此阈值的信号将不会被使用在装修。
参数:...
Not used.
不使用。
值----------Value----------
A named list structure of class XYCurve.
一个名为list类XYCurve结构。
遗漏值----------Missing values----------
The estimation of the function will only be made based on complete non-saturated observations, i.e. observations that contains no NA values nor saturated values as defined by satSignal.
基于完整的非饱和的意见,即观察,其中包含没有NA值也不作为satSignal的定义饱和值函数的估计仅会。
加权标准化----------Weighted normalization----------
Each data point, that is, each row in X, which is a vector of length 2, can be assigned a weight in [0,1] specifying how much it should affect the fitting of the affine normalization function. Weights are given by argument weights, which should be a numeric vector of length N.
每个数据点,也就是X,这是一个长度为2的向量的每一行,可以指定在[0,1]重量指定多少应该影响的仿射标准化函数的拟合。权重给出参数weights,这应该是一个numericvector长度为N
Note that the lowess and the spline method only support zero-one {0,1} weights. For such methods, all weights that are less than a half are set to zero.
请注意的的LOWESS和样条法,只支持零一{0,1}重量。对于这种方法,所有的权重,不到一个半被设置为零。
黄土详情----------Details on loess----------
For loess, the arguments family="symmetric", degree=1, span=3/4, control=loess.control(trace.hat="approximate", iterations=5, surface="direct") are used.
loess,参数family="symmetric",degree=1,span=3/4,control=loess.control(trace.hat="approximate",iterations=5,surface="direct")用于。
作者(S)----------Author(s)----------
Henrik Bengtsson (<a href="http://www.braju.com/R/">http://www.braju.com/R/</a>)
举例----------Examples----------
# Simulate data from the model y <- a + bx + x^c + eps(bx)[从模型模拟数据Y < - A + BX + X ^ C + EPS(BX)]
x <- rexp(1000)
a <- c(2,15)
b <- c(2,1)
c <- c(1,2)
bx <- outer(b,x)
xc <- t(sapply(c, FUN=function(c) x^c))
eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
Y <- a + bx + xc + eps
Y <- t(Y)
lim <- c(0,70)
plot(Y, xlim=lim, ylim=lim)
# Fit principal curve through a subset of (y_1, y_2)[适合通过主曲线的一个子集(y_1,y_2)]
subset <- sample(nrow(Y), size=0.3*nrow(Y))
fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
lines(fit, col="red", lwd=2)
# Backtransform (y_1, y_2) keeping y_1 unchanged[backtransform(y_1,y_2)保持y_1不变]
YN <- backtransformXYCurve(Y, fit=fit)
points(YN, col="blue")
abline(a=0, b=1, col="red", lwd=2)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|