case1902(Sleuth2)
case1902()所属R语言包:Sleuth2
Death Penalty and Race
死刑和种族
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Lawyers collected data on convicted murderers in the state of Georgia to see whether convicted murderers who were black were more likely to receive the death penalty than convicted murderers who were white, after accounting for aggravation level of the murder. They categorized murders into 6 progressively more serious types. Category 1 comprises barroom brawls, liquor-induced arguments lovers' quarrels, and similar crimes. Category 6 includes the most vicious, cruel, cold=blooded, unprovoked crimes.
律师收集到的数据在佐治亚州被定罪的杀人犯,看是否有谋杀罪的是黑色的更有可能收到的是白色的,占加重的谋杀后,比杀人犯的死刑。他们分类,分为6个种类越来越严重的谋杀案。第1类包括条形间斗殴,酒引起的参数恋人的争吵,类似的罪行。 6类,包括最恶毒的,残忍的,冷=热血沸腾,无端的罪行。
用法----------Usage----------
case1902
格式----------Format----------
A data frame with 12 observations on the following 4 variables.
一个数据框有12以下4个变量的观察。
Aggravationthe aggravation level of the crime, a factor with levels "1", "2", "3", "4", "5" and "6"
Aggravation的犯罪,加重的因素与水平"1","2","3","4","5"和"6"
Victima factor indicating race of murder victim, with levels "White" and "Black"
Victim的一个因素,指出谋杀的受害者的种族,同级别"White"和"Black"
Deathnumber in the aggravation and victim category who received the death penalty
Death的加剧和受害者类被判死刑
Nodeathnumber in the aggravation and victim category who did not receive the death penalty
Nodeath没有收到死刑的人的加重和受害者类
源----------Source----------
Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed), Duxbury.
拉姆齐,F.L.和Schafer,D.W. (2002年)。的统计的猎犬:A课程方法的数据分析(第二版),达克斯伯里。
参考文献----------References----------
Woodworth, G.C. (1989). Statistics and the Death Penalty, Stats 2: 9–12.
实例----------Examples----------
str(case1902)
# Add smidgeon to denominator because of zeros[分母,因为零smidgeon]
empiricalodds <- with(case1902, Death/(Nodeath + .5))
plot(empiricalodds ~ as.numeric(Aggravation), case1902, log="y", pch=ifelse(Victim=="White", 21, 19), xlab="Aggravation Level of the Murder", ylab="Odds of Death Penalty")
legend(3.8,.02,legend=c("White Victim Murderers","Black Victim Murderers"),pch=c(21,19))
fitbig <- glm(cbind(Death,Nodeath) ~ Aggravation*Victim, case1902, family=binomial)
# No evidence of overdispersion; no statistically significant evidence[无统计学显着的证据没有证据偏大;]
# of interactive effect [交互效应]
anova(fitbig, test="Chisq")
fitlinear <- glm(cbind(Death,Nodeath) ~ Aggravation + Victim, case1902, family=binomial)
summary(fitlinear)
# Mantel Haenszel Test, as an alternative[曼特尔Haenszel法测试,作为一种替代]
table1902 <- with(case1902, rbind(Death,Nodeath))
dim(table1902) <- c(2,2,6)
mantelhaen.test(table1902)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|