piecewise.linear(SiZer)
piecewise.linear()所属R语言包:SiZer
Fit a piecewise linear model
适合的分段线性模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fit a degree 1 spline with 1 knot point where the location of the knot point is unknown.
适合的程度1花键与1结点的结点的位置是未知的。
用法----------Usage----------
piecewise.linear(x, y, middle = 1, CI = FALSE,
bootstrap.samples = 1000, sig.level = 0.05)
参数----------Arguments----------
参数:x
Vector of data for the x-axis.
数据的x轴的向量。
参数:y
Vector of data for the y-axis
为y轴的向量数据
参数:middle
A scalar in [0,1]. This represents the range that the change-point can occur in. 0 means the change-point must occur at the middle of the range of x-values. 1 means that the change-point can occur anywhere along the range of the x-values.
标量[0,1]。这表示的范围内的变化点可以发生英寸0意味着必须发生的变化点的x值的范围的中间处。 1表示变化点可以沿x值的范围内的任何地方出现。
参数:CI
Whether or not a bootstrap confidence interval should be calculated.
无论自举置信区间应计算。
参数:bootstrap.samples
The number of bootstrap samples to take.
的bootstrap样本数。
参数:sig.level
What significance level to use for the confidence intervals.
使用什么样的显着性水平的置信区间。
Details
详细信息----------Details----------
The bootstrap samples are taken by resampling the raw data points. Often a more appropriate bootstrap sample would be to calculate the residuals and then add a randomly selected residual to each y-value.
bootstrap样本重采样的原始数据点。通常情况下,一个更合适的引导样本将计算出的残留物,然后添加一个随机选择的残余每个y值。
值----------Value----------
A list of 5 elements is returned: <table summary="R valueblock"> <tr valign="top"><td>change.point</td> <td> The estimate of α.</td></tr> <tr valign="top"><td>model</td> <td> The resulting lm object once α is known. </td></tr> <tr valign="top"><td>x</td> <td> The x-values used.</td></tr> <tr valign="top"><td>y</td> <td> The y-values used.</td></tr> <tr valign="top"><td>CI</td> <td> Whether or not the confidence interval was calculated.</td></tr> <tr valign="top"><td>intervals</td> <td> If the CIs where calculated, this is a matrix of the upper and lower intervals.</td></tr> </table> ...
5个元素,则返回的列表:<table summary="R valueblock"> <tr valign="top"> <TD>change.point </ TD> <TD>的估计α。< / TD> </ TR> <tr valign="top"> <TD> model</ TD> <td>在lm一次α被称为对象。 </ TD> </ TR> <tr valign="top"> <TD> x</ TD> <TD>的X值。</ TD> </ TR> <TR VALIGN =“顶“<TD> y </ TD> <TD>的y值。</ TD> </ TR> <tr valign="top"> <TD>CI</ TD> <TD>与否的置信区间的计算。</ TD> </ TR> <tr valign="top"> <TD> intervals </ TD> <TD>如果CIS计算这是一个矩阵的上部和下部的间隔。</ TD> </ TR> </表> ...
(作者)----------Author(s)----------
Derek Sonderegger
参考文献----------References----------
Chiu, G. S., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American Statistical Association 101:542-553.
Toms, J. D., and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.
参见----------See Also----------
~~objects to See Also as help, ~~~
~~的对象请参见help的,~~~
实例----------Examples----------
data(Arkansas)
x <- Arkansas$year
y <- Arkansas$sqrt.mayflies
model <- piecewise.linear(x,y, CI=FALSE)
plot(model)
print(model)
predict(model, 2001)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|