standardize(simsem)
standardize()所属R语言包:simsem
Standardize the parameter estimates within an object
对象内的标准化参数估计值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Standardize the parameter estimates within an object
对象内的标准化参数估计值
用法----------Usage----------
standardize(object)
参数----------Arguments----------
参数:object
The object to be standardized
对象物进行标准化
值----------Value----------
The object in the same class with standarized values
在同一类中的对象与标化值
方法----------Methods----------
This function will extract the coefficients and standardize it
此功能将提取的系数和规范
This function will extract the coefficients and standardize it
此功能将提取的系数和规范
(作者)----------Author(s)----------
Sunthud Pornprasertmanit (University of Kansas; <a href="mailto:psunthud@ku.edu">psunthud@ku.edu</a>)
实例----------Examples----------
# This function is not public.[这个功能是不公开的。]
# loading <- matrix(0, 6, 2)[加载< - 矩阵(0,6,2)]
# loading[1:3, 1] <- NA[载入[1:3] < - NA]
# loading[4:6, 2] <- NA[载入[4:6] < - NA]
# loadingValues <- matrix(0, 6, 2)[< - 矩阵loadingValues(0,6,2)]
# loadingValues[1:3, 1] <- 0.7[loadingValues [1:3],1 < - 0.7]
# loadingValues[4:6, 2] <- 0.7[loadingValues [4:6] < - 0.7]
# LX <- simMatrix(loading, loadingValues)[LX < - simMatrix(装载,loadingValues)]
# summary(LX)[摘要(LX)]
# latent.cor <- matrix(NA, 2, 2)[< - 矩阵latent.cor(NA,2,2)]
# diag(latent.cor) <- 1[诊断(latent.cor) - 1]
# PH <- symMatrix(latent.cor, 0.5)[PH < - symMatrix(latent.cor,0.5)]
# error.cor <- matrix(0, 6, 6)[< - 矩阵error.cor(0,6,6)]
# diag(error.cor) <- 1[诊断(error.cor) - 1]
# TD <- symMatrix(error.cor)[TD < - symMatrix(error.cor)]
# CFA.Model <- simSetCFA(LX = LX, PH = PH, TD = TD)[CFA.Model < - simSetCFA(LX = LX,PH = PH,TD = TD)]
# SimData <- simData(CFA.Model, 200)[SIMDATA < - SIMDATA(CFA.Model,200)]
# SimModel <- simModel(CFA.Model)[仿真模型仿真模型< - (CFA.Model)]
# standardize(run(SimModel, run(SimData)))[规范(运行(仿真模型,运行(SIMDATA)))]
# loading <- matrix(0, 6, 2)[加载< - 矩阵(0,6,2)]
# loading[1:3, 1] <- NA[载入[1:3] < - NA]
# loading[4:6, 2] <- NA[载入[4:6] < - NA]
# loadingValues <- matrix(0, 6, 2)[< - 矩阵loadingValues(0,6,2)]
# loadingValues[1:3, 1] <- 0.7[loadingValues [1:3],1 < - 0.7]
# loadingValues[4:6, 2] <- 0.7[loadingValues [4:6] < - 0.7]
# LX <- simMatrix(loading, loadingValues)[LX < - simMatrix(装载,loadingValues)]
# summary(LX)[摘要(LX)]
# latent.cor <- matrix(NA, 2, 2)[< - 矩阵latent.cor(NA,2,2)]
# diag(latent.cor) <- 1[诊断(latent.cor) - 1]
# PH <- symMatrix(latent.cor, 0.5)[PH < - symMatrix(latent.cor,0.5)]
# error.cor <- matrix(0, 6, 6)[< - 矩阵error.cor(0,6,6)]
# diag(error.cor) <- 1[诊断(error.cor) - 1]
# TD <- symMatrix(error.cor)[TD < - symMatrix(error.cor)]
# CFA.Model <- simSetCFA(LX = LX, PH = PH, TD = TD)[CFA.Model < - simSetCFA(LX = LX,PH = PH,TD = TD)]
# set <- reduceMatrices(run(CFA.Model))[集< - 的reduceMatrices(运行(CFA.Model))]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|