找回密码
 注册
查看: 318|回复: 0

R语言 simsem包 SimMissing-class()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 09:29:24 | 显示全部楼层 |阅读模式
SimMissing-class(simsem)
SimMissing-class()所属R语言包:simsem

                                        Class "SimMissing"
                                         类“SimMissing”

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Missing information imposing on the complete dataset
缺少的信息气势上完整的数据集


类对象----------Objects from the Class----------

Objects can be created by simMissing function. It can also be called from the form new("SimMissing", ...).
对象可以创建的simMissing功能。它也可以被称为,从形式new("SimMissing", ...)。


插槽----------Slots----------




cov: Column indices of any normally distributed covariates used in the data set.
cov:任何正态分布的协变量的数据集的列索引。




pmMCAR: Decimal percent of missingness to introduce completely at random on all variables.
pmMCAR:十进制%的missingness介绍完全随机对所有的变量。




pmMAR: Decimal percent of missingness to introduce using the listed covariates as predictors.
pmMAR:十进制%的missingness介绍上市的协变量的预测。




nforms: The number of forms for planned missing data designs, not including the shared form.
nforms:计划丢失的数据设计,不包括共享的形式的形式。




itemGroups: List of lists of item groupings for planned missing data forms. Without this, items will be divided into groups sequentially (e.g. 1-3,4-6,7-9,10-12)
itemGroups列表:列出项目组计划丢失的数据形式。没有这一点,项目将被分为组顺序(例如1-3,4-6,7-9,10-12)




twoMethod: Vector of (percent missing, column index). Will put a given percent missing on that column in the matrix to simulate a two method
twoMethod:矢量(%丢失,列索引)。将提出一个给定的百分比,在基质中,以模拟在该列上缺少两个方法




timePoints: Number of timepoints items were measured over. For longitudinal data, planned missing designs will be implemented within each timepoint.
timePoints:时间点项目的数量进行测量。纵向数据,将实施计划缺少的设计在每一个时间点。




numImps: The number of imputations to be used when multiply imputing missing data. Setting numImps to 0 will use FIML to handle missing data.
numImps:的数量时要使用的乘法填充缺失数据的插补。处理缺失数据,将使用FIML将numImps设置为0。




impMethod: Package that will be used for imputation. Currently only Amelia is supported.
impMethod:将用于归集的包。目前,只有阿米莉亚的支持。




ignoreCols: The columns not imposed any missing values for any missing data patterns
ignoreCols:列不施加任何缺失值的任何丢失的数据模式




threshold: The threshold of covariates that divide between the area to impose missing and the area not to impose missing. The default threshold is the mean of the covariate.
threshold:阈值的协变量之间的鸿沟的区域征收人失踪,宅碱基的面积不得征收缺少的。预设的阈值协变量的平均值。




prAttr: Probability (or vector of probabilities) of an entire case being removed due to attrition at a given time point. See imposeMissing for further details.
prAttr:被去除由于磨损在给定时间点的整个壳体的概率(或矢量的概率)。见imposeMissing进一步的细节。




covAsAux: If TRUE, the covariate listed in the object will be used as auxiliary variables when putting in the model object. If FALSE, the covariate will be included in the analysis.
covAsAux:如果TRUE,协变量中列出的对象将被用来作为辅助变量时,模型中的对象。如果FALSE,协将被包括在分析中。




logical: A matrix of logical values (TRUE/FALSE). If a value in the dataset is corresponding to the TRUE in the logical matrix, the value will be missing.
logical:矩阵的逻辑值(TRUE/FALSE)。如果在数据集中的值是对应的TRUE的逻辑矩阵,该值将丢失。




opts: A list of additional options to be passed to the imputation method specified in impMethod.
opts:一个额外的选项列表将被传递给指定的impMethod的插补方法。


方法----------Methods----------

summary To summarize the object
summary总结对象

run To impose missing information into data
run“”征收缺少的信息数据


(作者)----------Author(s)----------



Patrick Miller(University of Kansas; <a href="mailto:patr1ckm@ku.edu">patr1ckm@ku.edu</a>)
Alexander M. Schoemann (University of Kansas; <a href="mailto:schoemann@ku.edu">schoemann@ku.edu</a>)  
Kyle Lang (University of Kansas; <a href="mailto:kylelang@ku.edu">kylelang@ku.edu</a>)
Sunthud Pornprasertmanit (University of Kansas; <a href="mailto:psunthud@ku.edu">psunthud@ku.edu</a>)




参见----------See Also----------

imposeMissing for directly imposing missingness into a dataset.
imposeMissing为直接气势missingness到一个数据集。


实例----------Examples----------


# No Example[否示例]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-25 07:20 , Processed in 0.019677 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表