找回密码
 注册
查看: 318|回复: 0

R语言 simsem包 likRatioFit()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 09:22:05 | 显示全部楼层 |阅读模式
likRatioFit(simsem)
likRatioFit()所属R语言包:simsem

                                         Find the likelihood ratio (or Bayes factor) based on the bivariate distribution of fit indices
                                         找到的可能性比(或贝叶斯因子)的基础上的二元分布的拟合指数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Find the log-likelihood of the observed fit indices on Model 1 and 2 from the real data on the bivariate sampling distribution of fit indices fitting Model 1 and Model 2 by the datasets from the Model 1 and Model 2. Then, the likelihood ratio is computed (which may be interpreted as posterior odd). If the prior odd is 1 (by default), the likelihood ratio is equivalent to Bayes Factor.
找到二元抽样分布的拟合指数拟合的数据集的模式1和模式2模式1和模式2的真实数据模型1和2所观察到的拟合指数的对数似然。然后,似然比计算(它可被解释为后的奇数)。如果事先奇怪的是1(默认情况下),似然比贝叶斯因子。


用法----------Usage----------


likRatioFit(outMod1, outMod2, dat1Mod1, dat1Mod2, dat2Mod1, dat2Mod2,
usedFit=NULL, prior=1)



参数----------Arguments----------

参数:outMod1
SimModelOut that saves the analysis result of the first model from the target dataset  
SimModelOut,节省的第一个目标数据集模型的分析结果


参数:outMod2
SimModelOut that saves the analysis result of the second model from the target dataset  
SimModelOut,节省目标数据集的第二个模型的分析结果


参数:dat1Mod1
SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 1  
SimResult,节省了模拟分析模型1模型1所创建的数据集


参数:dat1Mod2
SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 1  
SimResult,节省了模拟分析模型2模型1所创建的数据集


参数:dat2Mod1
SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 2  
SimResult,节省了模拟分析模型1模型2所创建的数据集


参数:dat2Mod2
SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 2  
SimResult,节省了模拟分析模型2模型2所创建的数据集


参数:usedFit
Vector of names of fit indices that researchers wish to getCutoffs from. The default is to getCutoffs of all fit indices.  
矢量的拟合指数,研究人员希望getCutoffs的名字。默认值是拟合指数的所有getCutoffs。


参数:prior
The prior odds. The prior probability that Model 1 is correct over the prior probability that Model 2 is correct.  
在之前的赔率。先验概率模型1以上的先验概率是正确的模式2是正确的。


值----------Value----------

The likelihood ratio (Bayes Factor) in preference of Model 1 to Model 2. If the value is greater than 1, Model 1 is preferred. If the value is less than 1, Model 2 is preferred.
似然比(贝叶斯因子)优先模式1到模式2。如果该值大于1时,模式1是优选的。如果该值小于1,模型2是优选的。


(作者)----------Author(s)----------



Sunthud Pornprasertmanit (University of Kansas; <a href="mailto:psunthud@ku.edu">psunthud@ku.edu</a>)




参见----------See Also----------

SimResult for a detail of simResult pValueNested for a nested model comparison by the difference in fit indices pValueNonNested for a nonnested model comparison by the difference in fit indices
SimResult的细节simResultpValueNested一个嵌套模型的比较拟合指数的差异pValueNonNested为一个nonnested的模型比较拟合指数的差异


实例----------Examples----------


## Not run: [#不运行:]
library(lavaan)
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
path.A <- matrix(0, 3, 3)
path.A[2:3, 1] <- NA
path.A[3, 2] <- NA
param.A <- simParamSEM(LY=loading, BE=path.A)

model.A <- simModel(param.A, indLab=c(paste("x", 1:3, sep=""), paste("y", 1:8, sep="")))
out.A <- run(model.A, PoliticalDemocracy)

path.B <- matrix(0, 3, 3)
path.B[1:2, 3] <- NA
path.B[1, 2] <- NA
param.B <- simParamSEM(LY=loading, BE=path.B)

model.B <- simModel(param.B, indLab=c(paste("x", 1:3, sep=""), paste("y", 1:8, sep="")))
out.B <- run(model.B, PoliticalDemocracy)

u2 <- simUnif(-0.2, 0.2)
loading.mis <- matrix(NA, 11, 3)
loading.mis[is.na(loading)] <- 0
LY.mis <- simMatrix(loading.mis, "u2")
misspec <- simMisspecSEM(LY=LY.mis)

output.A.A <- runFit(model.A, PoliticalDemocracy, 5, misspec=misspec)
output.A.B <- runFit(model.A, PoliticalDemocracy, 5, misspec=misspec, analyzeModel=model.B)
output.B.A <- runFit(model.B, PoliticalDemocracy, 5, misspec=misspec, analyzeModel=model.A)
output.B.B <- runFit(model.B, PoliticalDemocracy, 5, misspec=misspec)

# The output may contain some warnings here. When the number of replications increases (e.g., 1000), the warnings should disappear.[输出可能包含一些警告。当复制数量增加时(例如,1000),警告消失。]
likRatioFit(out.A, out.B, output.A.A, output.A.B, output.B.A, output.B.B)

## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-25 07:41 , Processed in 0.021441 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表