找回密码
 注册
查看: 293|回复: 0

R语言 sensR包 AnotA()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 01:06:26 | 显示全部楼层 |阅读模式
AnotA(sensR)
AnotA()所属R语言包:sensR

                                        Analysis of A-not-A tests
                                         A-A测试分析

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Computation of dprime and it's uncertainty for the monadic A-not-A test together with the one-tailed P-value of the difference test (Fisher's Exact test).
计算的单子A--A测试的单尾P-值的差异测试(Fisher精确检验)dprime和它的不确定性。


用法----------Usage----------


AnotA(x1, n1, x2, n2, ...)

## S3 method for class 'anota'
confint(object, parm, level = 0.95, ...)

## S3 method for class 'anota'
plot(x, main = TRUE, length = 1000, ...)




参数----------Arguments----------

参数:x1
the number of (correct) A-answers on A-samples
答案A-A-样品的数量(正确)


参数:n1
the total number of A-samples
A-样品的总数


参数:x2
the number of A-answers on not-A-samples
A-答案-A-样品的数量


参数:n2
the number of not-A-samples
-A-样品的数量


参数:object
an anota object
anota对象


参数:parm
currently not used
目前未使用


参数:level
the desired confidence level
所需的置信水平


参数:x
an anota object
anota对象


参数:main
should the plot have a main title?
图应该有一个主标题?


参数:length
the discretization of the curves
曲线的离散化


参数:...
additional arguments passed to glm for AnotA; not used for confint and plot
额外的参数传递给glm为AnotA不使用confint和plot“


Details

详细信息----------Details----------

The AnotA function uses the glm and fisher.test functions of the stats package. Note that all arguments have to be positive integers.
AnotA功能使用glm和fisher.test功能的stats包。请注意,所有的参数都为正整数。


值----------Value----------

For AnotA an object of class anota (which has a print method). This is a list with elements <table summary="R valueblock"> <tr valign="top"><td>coefficients</td> <td>  named vector of coefficients (d-prime)</td></tr> <tr valign="top"><td>res.glm</td> <td> the glm-object from the fitting process</td></tr> <tr valign="top"><td>vcov</td> <td> variance-covariance matrix of the coefficients</td></tr> <tr valign="top"><td>se</td> <td> named vector with standard error of the coefficients (standard error of d-prime</td></tr> <tr valign="top"><td>data</td> <td> a named vector with the data supplied to the function</td></tr> <tr valign="top"><td>p.value</td> <td> one-sided p-value from Fisher's exact test (fisher.test)</td></tr>  <tr valign="top"><td>test</td> <td> a string with the name of the test (A-Not A) for the print method</td></tr> <tr valign="top"><td>call</td> <td> the matched call</td></tr>
对于AnotA类的一个对象anota(其中有一个print方法)。这是一个列表的元素<table summary="R valueblock"> <tr valign="top"> <TD> coefficients</ TD> <TD>命名的系数向量(D素数)</ TD > </ TR> <tr valign="top"> <TD>res.glm </ TD> <TD>装修过程的的GLM对象从</ TD> </ TR> <TR VALIGN =“顶部“<TD> vcov </ TD> <TD>方差 - 协方差矩阵的系数</ TD> </ TR> <tr valign="top"> <TD>se</ <TD>名为系数(D-黄金标准误差标准误差向量与TD> </ TD> </ TR> <tr valign="top"> <TD>data </ TD> <TD一个名为矢量提供的数据的功能</ TD> </ TR> <tr valign="top"> <TD>p.value </ TD> <TD>片面的P-值从费舍尔的精确检验(fisher.test)</ TD> </ TR> <tr valign="top"> <TD> test</ TD> <td>一个字符串的名称测试( A-Not A)的打印方法</ TD> </ TR> <tr valign="top"> <TD>call</ TD> <TD>匹配的呼叫</ TD> </ TR >

</table> For plot a figure of the distributions of sensory intensity is produced, and for confint a 2-by-2 matrix of confidence intervals is returned.
</ TABLE> plot感觉强度的分布图制作,confint一个2×2矩阵的置信区间,则返回。


(作者)----------Author(s)----------


Rune Haubo B Christensen and Per Bruun Brockhoff



参考文献----------References----------

models for sensory discrimination tests as generalized linear models.

参见----------See Also----------

print.discrim, discrim, discrimPwr, discrimSim,
print.discrim,discrim,discrimPwr,discrimSim,


实例----------Examples----------


# data: 10 of the A-samples were judged to be A[数据:10的A-样品被判定为甲]
#       20 A-samples in total[20 A-样品中总]
#       3 of the not-A samples were judged to be A[3不的样品被判定为甲]
#       20 not-A-samples in total[20-A-样品中总]

AnotA(10, 20, 3, 20)
(m1 <- AnotA(10, 20, 3, 20))

## plot distributions of sensory intensity:[#图的感觉强度分布:]
plot(m1)

## likelihood based confidence intervals:[似然置信区间:]
confint(m1)

## Extended example plotting the profile likelihood[#扩展的例子策划的档案可能性]
xt <- cbind(c(3, 10), c(20 - 3, 20 - 10))
lev <- gl(2, 1)
summary(res <- glm(xt ~ lev,
                   family = binomial(link = probit)))
N <- 100
dev <- double(N)
level <- c(0.95, 0.99)
delta <- seq(1e-4, 5, length = N)
for(i in 1:N)
  dev[i] <- glm(xt ~ 1 + offset(c(0, delta[i])),
                family = binomial(probit))$deviance
plot(delta, exp(-dev/2), type = "l",
     xlab = expression(delta),
     ylab = "Normalized Profile Likelihood")
## Add Normal approximation:[#添加师范大学近似:]
lines(delta, exp(-(delta - coef(res)[2])^2 /
                 (2 * vcov(res)[2,2])), lty = 2)
## Add confidence limits:[#添加的置信区间:]
lim <- sapply(level, function(x)
              exp(-qchisq(x, df=1)/2) )
abline(h = lim, col = "grey")


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-20 00:26 , Processed in 0.020937 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表