morris(sensitivity)
morris()所属R语言包:sensitivity
Morris's Elementary Effects Screening Method
莫里斯的基本作用筛选方法
译者:生物统计家园网 机器人LoveR
描述----------Description----------
morris implements the Morris's elementary effects screening method (Morris 1992). This method, based on design of experiments, allows to identify the few important factors at a cost of r * (p + 1) simulations (where p is the number of factors). This implementation includes some improvements of the original method: space-filling optimization of the design (Campolongo et al. 2007) and simplex-based design (Pujol 2008).
morris实现了莫里斯的小学效果的检查方法(莫里斯1992年)。这种方法,设计性实验的基础上,可确定的一些重要因素,在成本r * (p + 1)模拟(p是多少的因素)。此实现包括原始的方法:一些改进的空间填充设计优化(Campolongo等,2007)和单纯化设计(普霍尔2008年)。
用法----------Usage----------
morris(model = NULL, factors, r, design, binf = 0, bsup = 1,
scale = TRUE, ...)
## S3 method for class 'morris'
tell(x, y = NULL, ...)
## S3 method for class 'morris'
print(x, ...)
## S3 method for class 'morris'
plot(x, identify = FALSE, ...)
plot3d.morris(x, alpha = c(0.2, 0), sphere.size = 1)
参数----------Arguments----------
参数:model
a function, or a model with a predict method, defining the model to analyze.
函数或一个的模型与predict方法,定义模型来分析。
参数:factors
an integer giving the number of factors, or a vector of character strings giving their names.
一个整数,给出的因素的数量,或字符串的向量给予他们的名字。
参数:r
either an integer giving the number of repetitions of the design, i.e. the number of elementary effect computed per factor, or a vector of two integers c(r1, r2) for the space-filling improvement (Campolongo et al.). In this case, r1 is the wanted design size, and r2 (> \code{r1}) is the size of the (bigger) population in which is extracted the design (this can throw a warning, see below).
无论是一个整数,给出的设计的重复数,即每因子计算的基本效果的数量,或向量的两个整数c(r1, r2)改善的空间填充(Campolongo等人)。在这种情况下,r1是被通缉的设计尺寸,和r2(> \code{r1})的大小(大)人口中提取的设计(这可以抛出一个警告,见下文)。
参数:design
a list specifying the design type and its parameters:
一个指定的设计类型及其参数列表:
type = "oat" for Morris's OAT design (Morris 1992), with the parameters:
type = "oat"·莫里斯公司的的OAT设计(莫里斯1992年)的参数:
levels : either an integer specifying the number of levels of the design, or a vector of integers for different values for each factor.
levels:是一个整数,指定的数量的设计水平,或为每个因素的不同值的整数向量。
grid.jump : either an integer specifying the number of levels that are increased/decreased for computing the elementary effects, or a vector of integers for different values for each factor. If not given, it is set to grid.jump = 1. Notice that this default value of one does not follow Morris's recommendation of levels / 2.
grid.jump:一个整数指定的数量的增加/减少的水平,用于计算的基本效果,或为不同的值,每个因子的整数向量。如果没有给出,它被设置为grid.jump = 1。请注意,此默认值的一个不遵循莫里斯的建议,levels / 2。
type = "simplex" for simplex-based design (Pujol 2008), with the parameter:
type = "simplex"单纯为基础的设计(普霍尔2008年),其参数为:
scale.factor : a numeric value, the homothety factor of the (isometric) simplexes. Edges equal one with a scale factor of one.
scale.factor:一个数值,位似(视)单形的因素。边缘等于一个具有比例因子之一。
参数:binf
either an integer, specifying the minimum value for the factors, or a vector for different values for each factor.
一个整数,指定的最小值的因素,或为不同的值,每个因子的向量。
参数:bsup
either an integer, specifying the maximum value for the factors, or a vector for different values for each factor.
一个整数,指定的因素,或为每个因子的向量的不同的值的最大值。
参数:scale
logical. If TRUE, the input and output data are scaled before computing the elementary effects.
逻辑。如果TRUE,输入和输出数据进行缩放之前计算的基本效果。
参数:x
a list of class "morris" storing the state of the screening study (parameters, data, estimates).
类的列表"morris"存储状态的筛选研究(参数,数据,估计)。
参数:y
a vector of model responses.
一个向量模型的响应。
参数:identify
logical. If TRUE, the user selects with the mouse the factors to label on the (mu*, sigma) graph (see identify).
逻辑。如果TRUE,用户用鼠标选择标签上的因素(mu*, sigma)图(见identify)。
参数:...
any other arguments for model which are passed unchanged each time it is called.
任何其他参数model传递不变的,每次它被称为。
参数:alpha
a vector of three values between 0.0 (fully transparent) and 1.0 (opaque) (see rgl.material). The first value is for the cone, the second for the planes.
一个向量的三个值介于0.0(完全透明)和1.0(不透明)(见rgl.material)。第一个值是为圆锥体,第二次的飞机。
参数:sphere.size
a numeric value, the scale factor for displaying the spheres.
一个数字值,显示球的比例因子。
Details
详细信息----------Details----------
plot2d draws the (mu*, sigma) graph.
plot2d绘制(mu*, sigma)图。
plot3d.morris draws the (mu, mu*, sigma) graph (requires the rgl package). On this graph, the points are in a domain bounded by a cone and two planes (application of the Cauchy-Schwarz inequality).
plot3d.morris绘制(mu, mu*, sigma)图(需要rgl包)。在此图中,点是在域范围内的圆锥体和两架飞机(Cauchy-Schwarz不等式的应用)。
值----------Value----------
morris returns a list of class "morris", containing all the input argument detailed before, plus the following components:
morris返回一个列表类"morris",包含所有的输入参数前面的描述,再加上以下组件:
参数:call
the matched call.
匹配的呼叫。
参数:X
a data.frame containing the design of experiments.
data.frame包含实验的设计。
参数:y
a vector of model responses.
一个向量模型的响应。
参数:ee
a r * p matrix of elementary effects for all the factors.
r * p矩阵的初等影响的所有因素。
Notice that the statitics of interest (mu, mu* and sigma) are not stored. They can be printed by the print method, but to extract numerical values, one has to compute them with the following instructions:
请注意,统计程序的利息(mu,mu*和sigma)不存储。他们可以打印的print方法,但提取数值,计算它们与下面的说明:
警告消息----------Warning messages----------
"keeping r' repetitions out of r" when generating the design of experiments, identical repetitions are removed, leading to a lower
“R重复保持满分的r”生成实验设计时,相同的重复去除,导致较低的
参考文献----------References----------
computational experiments, Technometrics, 33, 161–174.
screening design for sensitivity, Environmental Modelling \& Software, 22, 1509–1518.
metamodels, submited to Reliability Engineering and System Safety.
参见----------See Also----------
decoupling
decoupling
实例----------Examples----------
# Test case : the non-monotonic function of Morris[测试情况:非单调函数,莫里斯]
x <- morris(model = morris.fun, factors = 20, r = 4,
design = list(type = "oat", levels = 5, grid.jump = 3))
print(x)
plot(x)
## Not run: morris.plot3d(x) # (requires the package 'rgl')[#不运行:morris.plot3d(X)#(需要包“RGL)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|