找回密码
 注册
查看: 440|回复: 0

R语言 sensitivityPStrat包 sensitivitySGL()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 00:54:07 | 显示全部楼层 |阅读模式
sensitivitySGL(sensitivityPStrat)
sensitivitySGL()所属R语言包:sensitivityPStrat

                                        principal stratification sensitivity analysis with time to event data
                                         随着时间的推移事件数据的主要分层敏感性分析

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Principal stratification sensitivity analysis with time to event data using the method described by Shepherd, Gilbert, and Lumley (2007).
主要分层敏感性分析事件数据所描述的牧羊人,吉尔伯特和拉姆利(2007)的方法。


用法----------Usage----------


sensitivitySGL(z, s, d, y, v, beta, tau, time.points, selection, trigger,
               groupings, empty.principal.stratum, followup.time,
               ci=0.95, ci.method = c("analytic", "bootstrap"),
               ci.type="twoSided", custom.FUN = NULL, na.rm = FALSE,
               N.boot = 100L, interval = c(-100, 100),
               upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,
               verbose = getOption("verbose"), isSlaveMode = FALSE)



参数----------Arguments----------

参数:z
vector; contains the grouping values (e.g., treatment assignment) for each record.
矢量包含分组的每条记录的值(例如,治疗分配)。


参数:s
vector; indicates whether a record is selected.
矢量表示一个记录是否被选中。


参数:d
vector; indicates whether a post-selection event has occurred. Can be NA for unselected records.
向量;表示是否选择后的事件已经发生。可以NA未选中的记录。


参数:y
vector; the length of time from selection until event (d) or censoring. Can be NA for unselected records.
矢量选择,直到事件的时间长度(d)或审查。可以NA未选中的记录。


参数:v
numeric vector; the length of time from randomization until selection or censoring.
数字矢量的长度从随机的时间,直到选择或审查。


参数:beta
vector; values of the sensitivity parameter β.  Inf and -Inf are acceptable.
矢量值的敏感性参数β。 Inf和-Inf是可以接受的。


参数:tau
maximum observed follow-up time after selection.  Selection weights are constant for t>\code{tau}.
最大随访时间后选择。为t>\code{tau}选择的权重是不变的。


参数:time.points
vector; time points, <VAR>t</VAR>, at which SCE(\var{t}) will be estimated.
向量的时间点,<VAR> </ VAR>,在SCE(\var{t})将估计。


参数:selection
The value of s indicating selection.
的值s表示选择。


参数:trigger
logical; the value of d that denotes the post-selection event.
逻辑的价值d表示后选择事件。


参数:groupings
Vector of two elements c(<VAR>g0</VAR>,<VAR>g1</VAR>), the first element <VAR>g0</VAR> being the value of z the delineates the first group, the last element <VAR>g1</VAR> being the value of z which delineates the second group.
向量的两个元素c(<VAR>g0</VAR>,<VAR>g1</VAR>),第一个元素<VAR> G0 </ VAR>的价值z描绘了第一组的最后一个元素<VAR> G1 </ VAR>的值z描绘了第二组。


参数:empty.principal.stratum
vector of two elements c(<VAR>s0</VAR>,<VAR>s1</VAR>); describes the s values that select the empty principal stratum.  If empty.principal.stratum=c(<VAR>s0</VAR>,<VAR>s1</VAR>), then stratum defined by S(\var{g0})=\var{s0} and S(\var{g1})=\var{s1} is the empty stratum.  In this example <VAR>s0</VAR> and <VAR>s1</VAR> refer to the two possible values of s. (Note: method only works if \var{s0} != \var{s1}).
向量的两个元素c(<VAR>s0</VAR>,<VAR>s1</VAR>);介绍了s的值选择空的主要阶层。如果empty.principal.stratum=c(<VAR>s0</VAR>,<VAR>s1</VAR>),然后阶层定义的S(\var{g0})=\var{s0}和S(\var{g1})=\var{s1}是空的阶层。在这个例子<VAR> S0 </ VAR>和<VAR> S1 </ VAR>的两个可能值s。 (注:方法只适用于如果\var{s0} != \var{s1})。


参数:followup.time
numeric value; cut-off point for v after which records are lost to censoring.
数值截止点v后的记录是输给了审查。


参数:ci
numeric vector; confidence interval level, defaults to 0.95.
数值向量的置信区间水平,默认为0.95。


参数:ci.method
character;  method by which the confidence interval and variance are calculated.  Can be &ldquo;analytic&rdquo; or &ldquo;bootstrap&rdquo;.  
字符;方法,通过该方法计算的置信区间和方差。可以“分析”或“引导”。


参数:ci.type
character vector; type of confidence interval that the corresponding ci element is referring to.  Can be &ldquo;upper&rdquo;, &ldquo;lower&rdquo;, or &ldquo;twoSided&rdquo;.  Defaults to "twoSided".     
字符向量的置信区间相应的ci元素指的类型。可以是“上”,“下”,或“twoSided”。默认为"twoSided"的。


参数:custom.FUN
function; function to calculate custom result. Fas0, Fas1, time.points, p0, p1 are available to be used as arguments in the custom function.  The custom function must return a vector of elements that is the same length as time.points.
功能自定义的函数来计算结果。 Fas0,Fas1,time.points,p0,p1是被用来作为自定义函数的参数中。自定义函数必须返回一个向量的元素是相同长度的time.points。


参数:na.rm
logical; indicates whether records that are invalid due to NA values should be removed from the data set.
逻辑表示是无效的,由于NA值的记录是否应该从数据集。


参数:N.boot
integer; number of bootstrap repetitions that will be run when  ci.method includes &ldquo;bootstrap&rdquo;.
整数,将运行时ci.method包括“引导”,引导重复数目。


参数:interval
numeric vector of length 2. Controls the range limits used to by optimize to estimate &alpha;.
数字矢量长度为2。控制的范围内限制使用由优化,估计&alpha;。


参数:lowerTest
logical;  Return the lower one sided p-value for SCE. Defaults to FALSE
返回较低的一个片面的P-值SCE逻辑。默认为FALSE


参数:upperTest
logical;  Return the upper one sided p-value for SCE. Defaults to FALSE
用逻辑;返回上一个双面P-值SCE。默认为FALSE


参数:twoSidedTest
logical;  Return a two sided p-value for SCE. Defaults to TRUE
用逻辑;返回的双面p值SCE。默认为TRUE


参数:verbose
logical;  prints dots when bootstrapping to show that something is happening.  Bootstrapping can take a long time.
逻辑打印点在引导时显示某些事情正在发生。自举可能需要很长的时间。


参数:isSlaveMode
logical.  Internal Use only. Used in recursion.
逻辑。仅供内部使用。在递归使用。


Details

详细信息----------Details----------

Performs a sensitivity analysis estimating the &ldquo;survival causal effect&rdquo; among those who would have been selected regardless of treatment assignment (SCE).  The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, monotonicity (i.e., one of the principal strata is empty), and independent censoring (i.e., time from selection to event is independent of time from selection until censoring).  SCE is then identified by assuming a value of the sensitivity parameter &beta;, where exp(&beta;) has an odds ratio interpretation (see help for sensitivityGBH).  Given selection in one treatment arm, the probability of selection if in the other treatment arm is assumed to be constant for for T(\code{z})>\code{tau}.  
估计在这些人会被选中,无论治疗分配(SCE)的“生存因果关系”进行了敏感性分析。该方法假定无干扰(即,所有科目的可能的结果是处理其他科目分配的影响),可忽略处理分配(即随机),单调性(即,其中的主要阶层是空的),和独立的审查(即,从选材到事件的时间选择,直到审查的时间)。 SCE假设的敏感性参数&beta;,然后确定exp(&beta;)的比值比解释(见帮助sensitivityGBH)。在一个处理的臂,所述的选择概率,如果给定的选择中的其他治疗臂被假定为常数用于T(\code{z})>\code{tau}。

SCE is computed at user specified time points.
SCE计算在用户指定的时间点。

Specifying beta=-Inf or beta=Inf estimates the bounds for SCE.
beta=-Inf或beta=Inf估计的边界,SCE。


值----------Value----------

object of class sensitivity2d
对象的类sensitivity2d

<table summary="R valueblock"> <tr valign="top"><td>SCE</td> <td>  SCE(\var{t})=Pr(T(\var{g0})<=\var{t}|S(\var{g0})=S(\var{g1})=\code{selection}) - Pr(T(\var{g1})<=\var{t}|S(\var{g0})=S(\var{g1})=\code{selection}). Array of the estimated SCE at all time.points for specified beta values.  Array dimensions are  length(time.points) by length(beta). </td></tr> <tr valign="top"><td>SCE.ci</td> <td>  array; confidence interval of SCE determined by quantile if using ci.method includes  &ldquo;bootstrap&rdquo;.  Otherwise calculated using analytic variance with large sample normal approximation. Array dimensions the same as element SCE. </td></tr> <tr valign="top"><td>SCE.var</td> <td>  array; estimated variance of SCE.  Array dimensions the same as element SCE. </td></tr> <tr valign="top"><td>ci.map</td> <td>  list; mapping of confidence interval to quantile probability.  Use numbers contained within as indices to the SCE.ci element. </td></tr> <tr valign="top"><td>beta</td> <td>  vector of user-specified &beta; values </td></tr> <tr valign="top"><td>alphahat</td> <td>  vector of estimated values of &alpha; </td></tr> <tr valign="top"><td>y0</td> <td>  vector of unique event times in the first group. </td></tr> <tr valign="top"><td>Fas0</td> <td>  matrix of estimated empirical distribution function values for y0 in the first group in the always selected principal stratum. Pr(Y(\var{g0}) <= \var{y0}|S(\var{g0})=S(\var{g1})=\code{selection}; &beta;) </td></tr> <tr valign="top"><td>y1</td> <td>  vector of unique event times in the second group. </td></tr> <tr valign="top"><td>Fas1</td> <td>  matrix of estimated empirical distribution function values for y1 in the second group in the always selected principal stratum.  Pr(Y(\var{g1}) <= \var{y1}|S(\var{g0})=S(\var{g1})=\code{selection}; &beta;) </td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> SCE</ TD> <TD>SCE(\var{t})=Pr(T(\var{g0})<=\var{t}|S(\var{g0})=S(\var{g1})=\code{selection}) - Pr(T(\var{g1})<=\var{t}|S(\var{g0})=S(\var{g1})=\code{selection})。估计SCE在所有time.points指定的beta值的数组。阵列的尺寸是length(time.points)length(beta)。 </ TD> </ TR> <tr valign="top"> <TD> SCE.ci </ TD> <TD>阵列的置信区间SCE由quantile如果使用ci.method 包含“引导”。否则使用分析方差大样本正常逼近的计算。数组维数相同元素SCE。 </ TD> </ TR> <tr valign="top"> <TD>SCE.var </ TD> <TD>阵列,估计方差SCE。数组维数相同元素SCE。 </ TD> </ TR> <tr valign="top"> <TD>ci.map </ TD> <TD>名单;位数的概率的置信区间的映射。使用数字SCE.ci元素包含在作为指数。 </ TD> </ TR> <tr valign="top"> <TD>beta </ TD> <TD>向量的用户指定的&beta;值</ TD> </ TR> <tr valign="top"> <TD>alphahat </ TD> <TD>向量的估计值&alpha; </ TD> </ TR> <tr valign="top"> < y0 TD> </ TD> <TD>矢量次在第一组中的唯一事件。 </ TD> </ TR> <tr valign="top"> <TD> Fas0 </ TD> <TD>矩阵的经验分布函数估计值y0在第一组中的总是选择主要阶层。 Pr(Y(\var{g0}) <= \var{y0}|S(\var{g0})=S(\var{g1})=\code{selection}; &beta;)</ TD> </ TR> <tr valign="top"> <TD>y1</ TD> <TD>矢量次在第二组的唯一事件。 </ TD> </ TR> <tr valign="top"> <TD> Fas1 </ TD> <TD>矩阵的经验分布函数估计值y1在第二组中的总是选择主要阶层。 Pr(Y(\var{g1}) <= \var{y1}|S(\var{g0})=S(\var{g1})=\code{selection}; &beta;)</ TD> </ TR> </ TABLE>


(作者)----------Author(s)----------



Bryan E. Shepherd <br>
Department of Biostatistics<br>
Vanderbilt University<br>




Charles Dupont <br>
Department of Biostatistics<br>
Vanderbilt University<br>




参考文献----------References----------

Shepherd BE, Gilbert PB, Lumley T (2007), &ldquo;Sensitivity analyses comparing time-to-event outcomes existing only in a subset selected postrandomization,&rdquo; Journal of the American Statistical Association 102, 573-582.

参见----------See Also----------

sensitivityGBH, sensitivityHHS, sensitivitySGD,  Surv
sensitivityGBH,sensitivityHHS,sensitivitySGD,Surv


实例----------Examples----------



data(vaccine.trial)
sens.time<-with(vaccine.trial,
                sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
                          d=ARTinitiation, beta=c(.25, 0,-.25,-.5), tau=3,
                          time.points=c(2,3), selection="infected",
                          trigger="initiated ART", groupings=c("placebo","vaccine"),
                          empty.principal.stratum=c("not infected","infected"),
                          N.boot=100, interval=c(-200,200))
               )
sens.time

sens.time<-with(vaccine.trial,
                sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
                          d=ARTinitiation, beta=c(.25, 0,-.25,-.5), tau=3,
                          time.points=c(2,3), selection="infected",
                          trigger="initiated ART", groupings=c("placebo","vaccine"),
                          empty.principal.stratum=c("not infected","infected"),
                          N.boot=100, interval=c(-200,200),
                          upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
               )
sens.time

sens.time2<-with(vaccine.trial,
                sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
                          d=ARTinitiation, beta=c(.25, 0,-.25,-.5), tau=3,
                          time.points=c(2,3), selection="infected",
                          trigger="initiated ART", groupings=c("placebo","vaccine"),
                          empty.principal.stratum=c("not infected","infected"),
                          custom.FUN=function(Fas0,Fas1,time.points,
                ...) { Fas0(time.points) - Fas1(time.points) },
                          N.boot=100, interval=c(-200,200))
               )
sens.time2

sens.time3<-with(vaccine.trial,
                sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
                          d=ARTinitiation, beta=c(-Inf,.25,0,-.25,-.5,Inf),
                          tau=3, time.points=c(2,3), selection="infected",
                          trigger="initiated ART", groupings=c("placebo","vaccine"),
                          empty.principal.stratum=c("not infected","infected"),
                          custom.FUN=function(Fas0,Fas1,time.points,
                ...) { Fas0(time.points) - Fas1(time.points) },
                          N.boot=100, interval=c(-200,200))
               )
sens.time3


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-19 07:23 , Processed in 0.020346 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表