IyenGreen(selectMeta)
IyenGreen()所属R语言包:selectMeta
Compute MLE and weight functions of Iyengar and Greenhouse (1988)
计算MLE和Iyengar和温室的权函数(1988)
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Two parameteric weight functions for selection models were introduced in Iyengar and Greenhouse (1988):
Iyengar和温室(1988年)中引入了两个选择模型的参数化权函数:
if |x| ≤ t(q, α) and w_1(x; β, q) = w_2(x; γ, q) = 1 otherwise. Here, t(q, α) is the α-quantile of a t distribution with q degrees of freedom. The functions w_1 and w_2 are used to model the selection process that may be present in a meta analysis, in a model where effect sizes are assumed to follow a t distribution. We have implemented estimation of the parameters in this model in IyenGreenMLE and plotting in IyenGreenWeight. The functions normalizeT and IyenGreenLoglikT are used in computation of ML estimators and not intended to be called by the user. For an example how to use IyenGreenMLE and IyenGreenWeight we refer to the help file for DearBegg.
如果|x| ≤ t(q, α)和w_1(x; β, q) = w_2(x; γ, q) = 1否则。在这里,t(q, α)是α位数的tq自由度的分布与。的功能w_1和w_2用于模型的选择过程中可能存在的meta分析,影响大小的模型中,假设遵循t分布。我们已实施IyenGreenMLE和绘图IyenGreenWeight在这个模型中的参数估计。的功能normalizeT和IyenGreenLoglikT中使用的ML估计的计算,而不是拟由用户调用。举一个例子,如何使用IyenGreenMLE和IyenGreenWeight的“我们的帮助文件DearBegg。
用法----------Usage----------
normalizeT(s, theta, b, q, N, type = 1, alpha = 0.05)
IyenGreenLoglikT(para, t, q, N, type = 1)
IyenGreenMLE(t, q, N, type = 1, alpha = 0.05)
IyenGreenWeight(x, b, q, type = 1, alpha = 0.05)
参数----------Arguments----------
参数:s
Quantile where normalizing integrand should be computed.
位数标准化积计算。
参数:theta
Vector containing effect size estimates of the meta analysis.
向量的规模效应估计的Meta分析。
参数:b
Parameter that governs shape of the weight function. Equals β for w_1 and γ for w_2.
参数,执政权重函数的形状。等于βw_1和γw_2。
参数:q
Degrees of freedom in the denominator of w_1, w_2. Must be a real number.
度自由的分母w_1, w_2。必须是实数。
参数:N
Number of observations in each trial.
在每次试验的观测数。
参数:type
Type of weight function in Iyengar & Greenhouse (1988). Either 1 (for w_1) or 2 (for w_2).
在艾扬格温室(1988年)的权重函数的类型。 1(w_1)或2(w_2)。
参数:alpha
Quantile to be used in the denominator of w_1, w_2.
分量使用的分母w_1, w_2。
参数:para
Vector in R^2 over which log-likelihood function is maximized.
向量在R^2数似然函数的最大化。
参数:t
Vector of real numbers, t test statistics.
向量的实数,t检验统计量。
参数:x
Vector of real numbers where weight function should be computed at.
权重函数应计算在实数向量。
Details
详细信息----------Details----------
Note that these weight functions operate on the scale of t statistics, not p-values.
需要注意的是,这些权重函数的操作上规模的t统计,而不是p值。
值----------Value----------
See example in DearBegg for details.
在DearBegg的详细信息,请参见示例。
(作者)----------Author(s)----------
Kaspar Rufibach (maintainer), <a href="mailto:kaspar.rufibach@gmail.com">kaspar.rufibach@gmail.com</a>, <br> <a href="http://www.kasparrufibach.ch">http://www.kasparrufibach.ch</a>
参考文献----------References----------
Selection models and the file drawer problem (including rejoinder). Statist. Sci., 3, 109–135.
参见----------See Also----------
For nonparametric estimation of weight functions see DearBegg.
权函数的非参数估计看到DearBegg。
实例----------Examples----------
# For an illustration see the help file for the function DearBegg().[有关说明,请参阅帮助文件的的功能DearBegg()。]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|