sdeDiv(sde)
sdeDiv()所属R语言包:sde
Phi-Divergences test for diffusion processes
披分歧试验扩散过程
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Phi-Divergences test for diffusion processes.
披分歧扩散过程的测试。
用法----------Usage----------
sdeDiv(X, theta1, theta0, phi= expression( -log(x) ), C.phi, K.phi,
b, s, b.x, s.x, s.xx, B, B.x, H, S, guess, ...)
参数----------Arguments----------
参数:X
a ts object containing a sample path of an sde.
一个TS对象,其中包含的样本路径的SDE。
参数:theta1
a vector parameters for the hypothesis H1. If not given, theta1 is estimated from the data.
一个向量参数的假设H1。如果没有给出,theta1估计的数据。
参数:theta0
a vector parameters for the hypothesis H0.
一个向量参数的假设H0。
参数:phi
an expression containing the phi function of the phi-divergence.
一个表达式,其中包含披披发散功能。
参数:C.phi
the value of first derivtive of phi at point 1. If not given, it is calculated within this function.
值phi在第1点的第一个derivtive。如果没有,它就会在这个函数中计算。
参数:K.phi
the value of second derivative of phi at point 1. If not given, it is calculated within this function.
phi1点的二阶导数的值。如果没有,它就会在这个函数中计算。
参数:b
drift coefficient of the model as a function of x and theta.
漂移模型的系数的函数x和theta。
参数:s
diffusion coefficient of the model as a function of x and theta.
扩散系数的模型的函数x和theta。
参数:b.x
partial derivative of b as a function of x and theta.
偏导数bx和theta函数。
参数:s.x
partial derivative of s as a function of x and theta.
偏导数sx和theta函数。
参数:s.xx
second-order partial derivative of s as a function of x and theta.
二阶偏导数sx和theta函数。
参数:B
initial value of the parameters; see details.
的参数的初始值;见详情。
参数:B.x
partial derivative of B as a function of x and theta.
偏导数Bx和theta函数。
参数:H
function of (x,y), the integral of B/s; optional.
(x,y)功能,B/s,可选的积分。
参数:S
function of (x,y), the integral of 1/s; optional.
(x,y)功能,1/s,可选的积分。
参数:guess
initial value for the parameters to be estimated; optional.
以进行估计的参数的初始值;可选的。
参数:...
passed to the optim function; optional.
传递给optim功能,可选的。
Details
详细信息----------Details----------
The sdeDiv estimate the phi-divergence for diffusion processes defined as D(theta1, theta0) = phi( f(theta1)/f(theta0) ) where f is the likelihood function of the process. This function uses the Dacunha-Castelle and Florens-Zmirou approximation of the likelihood for f.
sdeDiv估计披分歧扩散过程定义为D(theta1, theta0) = phi( f(theta1)/f(theta0) )其中f是似然函数的过程。此功能使用的可能性fDacunha-Castelle及佛罗伦-Zmirou的近似。
The parameter theta1 is supposed to be the value of the true MLE estimator or the minimum contrast estimator of the parameters in the model. If missing or NULL and guess is specified, theta1 is estimated using the minimum contrast estimator derived from the locally Gaussian approximation of the density. If both theta1 and guess are missing, nothing can be calculated.
参数theta1被认为是真正的极大似然估计的估计量的值或估计的模型中的参数的最小对比度。如果丢失或NULL和guess指定,theta1估计使用来自本地高斯近似的密度最小对比度估计。如果这两个theta1和guess缺少,没有什么可以计算出来的。
The function always calculates the likelihood ratio test and the p-value of the test statistics. In some cases, the p-value of the phi-divergence test statistics is obtained by simulation. In such a case, the out$est.pval is set to TRUE
该函数总是计算的似然比检验的检验统计量的p-值。在某些情况下,p-值,披发散的检验统计量的是,通过模拟获得的。在这样的情况下,out$est.pval被设置成TRUE
Dy default phi is set to -log(x). In this case the phi-divergence and the likelihood ratio test are equivalent (e.g. phi-Div = LRT/2)
镝默认phi设置为-log(x)。在这种情况下,披分歧和似然比检验是等价的(例如:PHI-DIV = LRT / 2)
For more informations on phi-divergences for discretely observed diffusion processes see the references.
欲了解更多信息披分歧,谨慎观察到的扩散过程,请参阅参考资料。
If missing, B is calculated as b/s - 0.5*s.x provided that s.x is not missing.
如果缺少,Bb/s - 0.5*s.x,s.x不缺少计算。
If missing, B.x is calculated as b.x/s - b*s.x/(s^2)-0.5*s.xx, provided that b.x, s.x, and s.xx are not missing.
如果没有,B.x的计算公式为b.x/s - b*s.x/(s^2)-0.5*s.xx,这b.x,s.x和s.xx是不缺。
If missing, both H and S are evaluated numerically.
如果缺少,两个H和S是数值计算。
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>x</td> <td> a list containing the value of the divergence, its pvalue, the likelihood ratio test statistics and its p-value</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> x</ TD> <TD>一个列表,其中包含的价值的分歧,其P值,似然比检验统计量和p值</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Stefano Maria Iacus
参考文献----------References----------
Dacunha-Castelle, D., Florens-Zmirou, D. (1986) Estimation of the coefficients of a diffusion from discrete observations, Stochastics, 19, 263-284.
De Gregorio, A., Iacus, S.M. (2008) Divergences Test Statistics for Discretely Observed Diffusion Processes. Available at http://arxiv.org/abs/0808.0853
实例----------Examples----------
set.seed(123)
theta0 <- c(0.89218*0.09045,0.89218,sqrt(0.032742))
theta1 <- c(0.89218*0.09045/2,0.89218,sqrt(0.032742/2))
# we test the true model against two competing models[我们实际测试模型对两个竞争车型]
b <- function(x,theta) theta[1]-theta[2]*x
b.x <- function(x,theta) -theta[2]
s <- function(x,theta) theta[3]*sqrt(x)
s.x <- function(x,theta) theta[3]/(2*sqrt(x))
s.xx <- function(x,theta) -theta[3]/(4*x^1.5)
X <- sde.sim(X0=rsCIR(1, theta1), N=1000, delta=1e-3, model="CIR", theta=theta1)
sdeDiv(X=X, theta0 = theta0, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx, method="L-BFGS-B",
lower=rep(1e-3,3), guess=c(1,1,1))
sdeDiv(X=X, theta0 = theta1, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx, method="L-BFGS-B",
lower=rep(1e-3,3), guess=c(1,1,1))
lambda <- -1.75
myphi <- expression( (x^(lambda+1) -x - lambda*(x-1))/(lambda*(lambda+1)) )
sdeDiv(X=X, theta0 = theta0, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx, method="L-BFGS-B",
lower=rep(1e-3,3), guess=c(1,1,1))
sdeDiv(X=X, theta0 = theta1, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx, method="L-BFGS-B",
lower=rep(1e-3,3), guess=c(1,1,1))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|