找回密码
 注册
查看: 269|回复: 0

R语言 scrime包 abf()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 23:01:29 | 显示全部楼层 |阅读模式
abf(scrime)
abf()所属R语言包:scrime

                                         Approximate Bayes Factor
                                         预计贝叶斯因子

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Computes the Approximate Bayes Factor proposed by Wakefield (2009) for test statistics theta / sqrt(V) that under the null hypothesis are assumed to follow an asymptotic standard normal distribution.
韦克菲尔德(2009年)提出的检验统计量计算的近似贝叶斯因子theta / sqrt(V)的零假设下的渐近标准正态分布假设。


用法----------Usage----------


abf(theta, V, W, numerator = 0, pi1 = NA)



参数----------Arguments----------

参数:theta
a vector of numeric values, e.g., the maximum likelihood estimates for the parameter of a logistic regression model computed by separately applying this simple logistic regression to several SNPs. It is thus assumed that under the null hypothesis theta / sqrt(V) is asymptotically standard normal distributed.  
一个向量,最大似然估计的数值,计算方法分别运用这个简单的几个单核苷酸多态性的logistic回归Logistic回归模型的参数。因此,它假定,在零假设theta / sqrt(V)下是渐近正态分布的标准。


参数:V
a vector of the same length as theta containing the variances of the estimates comprised by theta.
相同的长度的矢量theta包含包括由theta的估计的方差。


参数:W
the prior variance. Must be either a positive value or a vector of the same length as theta consisting of positive values.
先验方差。必须是一个正值或具有相同的长度的矢量作为theta组成的正值。


参数:numerator
either 0 or 1, specifying whether the numerator of the approximate Bayes factor comprises the  probability for the null hypothesis or the probability for the alternative hypothesis.  
为0或1,指定的近似贝叶斯因子的分子是否包括零假设的概率或替代的假设的概率。


参数:pi1
either a numeric value between 0 and 1 specifying the prior probability of association or a vector of the  same length as theta specifying for each of the SNPs a prior probability that this SNP is associated with the response.  If specified, prior odds, posterior odds, and depending on numerator the Bayesian False Discovery Probability (numerator = 0) or the posterior probability of association (numerator = 1) are computed. If NA, only the approximate Bayes factors are returned.
无论是0和1之间的数字值指定关联的先验概率或theta指定为每个的SNP这个SNP与响应关联的先验概率相同的长度的矢量。如果指定的话,后之前的赔率,赔率,并根据numerator的贝叶斯错误的发现概率(numerator = 0)或后验概率协会(numerator = 1)计算的。如果NA,只有返回近似贝叶斯因子。


值----------Value----------

If pi1 = NA, a vector of the same length as theta containing the values of the approximate Bayes factor. If pi1 is specified, a list consisting of <table summary="R valueblock"> <tr valign="top"><td>ABF</td> <td> a numeric vector containing the values of the approximate Bayes factors,</td></tr> <tr valign="top"><td>priorOdds</td> <td> either a numeric value or a numeric vector comprising the prior odds of association (if numerator = 1) or no association (if numerator = 0),</td></tr> <tr valign="top"><td>postOdds</td> <td> a numeric vector containing the posterior odds of association (if numerator = 1) or no association (if numerator = 0),</td></tr> </table> and either <table summary="R valueblock"> <tr valign="top"><td>BFDP</td> <td> a numeric vector containing the Bayesian False Discovery Probabilities for the SNPs (if numerator = 0),</td></tr> </table> or <table summary="R valueblock"> <tr valign="top"><td>PPA</td> <td> a numeric vector comprising the posterior probabilities of association (if numerator = 1)l</td></tr>  </table>
如果pi1 = NA,theta含有近似贝叶斯因子的值具有相同的长度的矢量。如果pi1指定,一列由<table summary="R valueblock"> <tr valign="top"> <TD> ABF</ TD> <td>一个数值向量包含值的近似贝叶斯因子,</ TD> </ TR> <tr valign="top"> <TD>priorOdds </ TD> <TD>为一个数字或数字向量,包括事先赔率协会(numerator = 1)或无关联(如果numerator = 0),</ TD> </ TR> <tr valign="top"> <TD> postOdds</ TD> <td>一个数字向量后的赔率协会(numerator = 1)或无关联(如果numerator = 0)</ TD> </ TR> </ TABLE>,要么表摘要“R valueblock”> <tr valign="top"> <TD> BFDP</ TD> <td>一个数字向量的贝氏假单核苷酸多态性的发现概率(如果numerator = 0), / TD> </ TR> </ TABLE> <table summary="R valueblock"> <tr valign="top"> <TD>PPA </ TD> <td>一个数值向量,包括后协会概率(如果numerator = 1)升</ TD> </ TR> </表>


(作者)----------Author(s)----------



Holger Schwender, <a href="mailto:holger.schw@gmx.de">holger.schw@gmx.de</a>




参考文献----------References----------

Wakefield, J. (2007). A Bayesian Measure of Probability of False Discovery in Genetic Epidemiology Studies. American Journal of Human Genetics, 81, 208-227.
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 22:46 , Processed in 0.019888 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表