找回密码
 注册
查看: 375|回复: 0

R语言 SCperf包 WW()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 23:01:05 | 显示全部楼层 |阅读模式
WW(SCperf)
WW()所属R语言包:SCperf

                                        The Wagner-Whitin algorithm
                                         这是The Wagner-Whitin算法

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

WW implements the Wagner-Whitin algorithm. Considering time-varying demand, the algorithm builds production plans that minimizes the total setup and holding costs in a finite horizon of time, assuming zero starting inventory and no backlogging.
WW实现的Wagner-Whitin算法。考虑到随时间变化的需求,该算法生成生产计划,最大限度地减少了设置和持有成本,在有限的时间地平线,假设零开始的库存并没有短缺量拖后。


用法----------Usage----------


WW(x,a,h,method=c("forward","backward"))
## Default S3 method:[默认方法]
WW(x,a,h,method=c("forward","backward"))
## S3 method for class 'WW'
print(x, ...)



参数----------Arguments----------

参数:x
a numeric vector containing the demand per unit time,
一个数值向量,包含每单位时间的需求,


参数:a
a numeric vector containing the set-up cost per unit time,
一个数值向量含有的每单位时间的设置成本,


参数:h
a numeric vector containing the holding cost per unit time,
含有的每单位时间的成本保持一个数值向量,


参数:method
character string specifing which algorithm to use, must be "forward" (default) or "backward".
要使用的算法的字符的字符串specifing的,必须是“前进”(默认)或“落后”。


参数:...
not used.  
不被使用。


值----------Value----------

WW.default (the function that is called when using WW) returns a list containing:
WW.default(函数被调用时使用WW)返回一个列表,其中包含:


参数:TVC
total variable cost,
总可变成本,


参数:Jt
last period of production for the forward algorithm or the (end of the) period when the inventory reaches a zero level for the backward algorithm,
去年同期生产前向算法(结束)期间,当库存达到零水平落后算法,


参数:Solution
matrix of solutions.
矩阵的解决方案。


(作者)----------Author(s)----------


Marlene Silva Marchena <a href="mailto:marchenamarlene@gmail.com">marchenamarlene@gmail.com</a>




参考文献----------References----------

Sweden: Springer, Second Edition.
operational research. New York: McGraw-Hill, Seventh Edition.

参见----------See Also----------

EOQ, EPQ, Newsboy
EOQ,EPQ,Newsboy


实例----------Examples----------


# Example from Hiller, p.952, reproduced bellow: [例如从希勒,p.952,转载波纹管:]
# An airplane manufacturer specializes in producing small airplanes. It has just received an[飞机制造商专门生产小型飞机。刚收到的]
# order from a major corporation for 10 customized executive jet airplanes for the use[为了从一个大公司,10个定制的喷气公务机飞机的使用]
# of the corporation's upper management. The order calls for three of the airplanes to be[该公司的高层管理人员。该命令的调用三的飞机]
# delivered (and paid for) during the upcoming winter months (period 1), two more to be delivered[在即将到来的冬季(第1期),交付交付(支付)]
# during the spring (period 2), three more during the summer (period 3),and[弹簧(周期2),三个以上的夏季期间(周期3)中,和期间]
# the final two during the fall (period 4). Setting up the production facilities to meet[在秋季的最后两个(4期)。设置生产设施,以满足]
# the corporation's specifications for these airplanes requires a setup cost of $2 million.[该公司的规格为这些飞机需要200万美元的安装成本。]
# The manufacturer has the capacity to produce all 10 airplanes within a[制造商有能力生产10架飞机在]
#  couple of months, when the winter season will be under way. However, this would necessitate holding[几个月内,在冬季时将正在进行。然而,这将需要保持]
# seven of the airplanes in inventory, at a cost of $200,000 per airplane per period, until their[7库存的飞机,每架飞机每周期20万美元的成本,直到他们]
# scheduled delivery times (...)[预定的交货时间(...)]
# Management would like to determine theleast costly production schedule for filling this order.[管理层想填补这个顺序来确定,知道不重要的东西是什么昂贵的生产进度。]

x  <- c(3,2,3,2)
a  <- c(2,2,2,2)
h  <- c(0.2,0.2,0.2,0.2)
WW(x,a,h,method="forward") # forward algorithm[向前算法]
WW(x,a,h,method="backward") # backward algorithm[后向算法]

# The optimal production schedules for the forward and backward case is to:[的向前和向后的情况下的最优生产时间表是:]
# 1. Produce in period 1 for periods 1, 2, 3 and 4 (3 + 2 + 3 + 2 = 10  airplanes)[1。在时期1期1,2,3,4(3 + 2 + 3 + 2 = 10架飞机的生产)]
# Total variable cost $4.8 million.[总可变成本480万美元。]
# 2. Produce in period 1 for periods 1 and 2 (3 + 2 = 5  airplanes) and in period 3[2。生产周期1和2(3 + 2 = 5架飞机)在时期1和第3期]
# for periods 3 and 4 (3 + 2 = 5 airplanes)[期间3和第4(3 + 2 = 5架飞机)]
# Total variable cost $4.8 million.[总可变成本480万美元。]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 22:47 , Processed in 0.020498 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表