找回密码
 注册
查看: 380|回复: 0

R语言 scout包 scout()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 23:00:25 | 显示全部楼层 |阅读模式
scout(scout)
scout()所属R语言包:scout

                                        Covariance-regularized regression, aka the Scout.
                                         协方差正规化回归,又名童军。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The main function of the "scout" package. Performs covariance-regularized regression. Required inputs are an x matrix of features (the columns are the features) and a y vector of observations. By default, Scout(2,1) is performed; however, $p_1$ and $p_2$ can be specified (in which case Scout($p_1$, $p_2$) is performed). Also, by default Scout is performed over a grid of lambda1 and lambda2 values, but a different grid of values (or individual values, rather than an entire grid) can be specified.
其主要功能的“侦察兵”的包。执行协方差正规化回归。所需的输入功能是X矩阵(列的功能)和ay观测向量。默认情况下,童军(2,1),但是,可以指定$ P_1 $ $,P_2 $(在这种情况下,侦察员($ P_1 $,$ P_2 $))。另外,默认情况下,侦察兵进行的lambda1和lambda2值一格的,但可以指定一个不同的网格值(或个人的价值观,而不是整个网格)。


用法----------Usage----------


scout(x,y,newx,p1=2,p2=1,lam1s=seq(.001,.2,len=10),lam2s=seq(.001,.2,len=10),rescale=TRUE, trace=TRUE,standardize=TRUE)



参数----------Arguments----------

参数:x
A matrix of predictors, where the rows are the samples and the columns are the predictors
的预测,其中各行是样品和列的矩阵的预测


参数:y
A matrix of observations, where length(y) should equal nrow(x)
矩阵的观测,长度(Y),应等于NROW(X)


参数:newx
An *optional* argument, consisting of a matrix with ncol(x) columns, at which one wishes to make predictions for each (lam1,lam2) pair.
*可选的参数,NCOL(x)的列,在哪一个愿望,使每个(lam1,lam2)对预测矩阵组成。


参数:p1
The $L_p$ penalty for the covariance regularization. Must be one of 1, 2, or NULL. NULL corresponds to no covariance regularization.  WARNING: When p1=1, and ncol(x)>500, Scout can be SLOW. We recommend that for very large data sets, you use Scout with p1=2. Also, when ncol(x)>nrow(x) and p1=1, then very small values of lambda1 (lambda1 < 1e-4) will cause problems with graphical lasso, and so those values will be automatically increased to 1e-4.
L_P $罚款的协方差正规化。必须是1,2,或NULL。 NULL没有协方差正规化。警告:当P1 = 1,和ncol(X)> 500,Scout可以是缓慢的。非常大的数据集,我们建议您使用童军P1 = 2。此外,NCOL(X)> NROW(x)和P1 = 1,则非常小的值的lambda1(lambda1 <1E-4)会导致问题,图形套索,所以这些值将被自动提升至1E 4。


参数:p2
The $L_p$ penalty for the estimation of the regression coefficients based on the regularized covariance matrix. Must be one of 1 (for $L_1$ regularization) or NULL (for no regularization).
L_P $处罚的基础上正则的协方差矩阵的估计回归系数。必须是1($ L_1 $正规化)或NULL(不正规化)。


参数:lam1s
The (vector of) tuning parameters for regularization of the covariance matrix. Can be NULL if p1=NULL, since then no covariance regularization is taking place. If p1=1 and nrow(x)<ncol(x), then the no value in lam1s should be smaller than 1e-3, because this will cause graphical lasso to take too long. Also, if ncol(x)>500 then we really do not recommend using p1=1, as graphical lasso can be uncomfortably slow.
正规化的协方差矩阵(矢量)调整参数。可以为NULL,如果p1 = NULL,因为当时没有协方差正规化发生。如果p1 = 1,NROW(X)<NCOL(X),那么没有价值的lam1s应该小于1E-3,因为这将导致图形套索的时间过长。此外,NCOL(X)> 500,那么,我们真的不建议使用P1 = 1,图形化的套索而显得缓慢。


参数:lam2s
The (vector of) tuning parameters for the $L_1$ regularization of the regression coefficients, using the regularized covariance matrix. Can be NULL if p2=NULL. (If p2=NULL, then non-zero lam2s have no effect). A value of 0 will result in no regularization.
(矢量)调整参数$ L_1 $正规化的回归系数,使用正则协方差矩阵。可以是NULL如果p2 = NULL。 (如果p2 = NULL,然后非零lam2s的有没有影响)。值为0将导致在没有正规化。


参数:rescale
Should coefficients beta obtained by covariance-regularized regression be re-scaled by a constant, given by regressing $y$ onto $x beta$? This is done in Witten and Tibshirani (2008) and is important for good performance. Default is TRUE.
如果协方差正规化回归得到的系数测试重新缩放一个常数,给予上倒退$ Y $ $ X测试$?这是在威腾和Tibshirani(2008年)和良好的性能是非常重要的。默认值是TRUE。


参数:trace
Print out progress? Prints out each time a lambda1 is completed. This is a good idea, especially when ncol(x) is large.
打印出的进展如何?每次打印出一个lambda1完成。这是一个好主意,特别是当NCOL(x)为大。


参数:standardize
Should the columns of x be scaled to have standard deviation 1, and should y be scaled to have standard deviation 1, before covariance-regularized regression is performed? This affects the meaning of the penalties that are applied. In general, standardization should be performed. Default is TRUE.
如果X的列进行调整,标准偏差为1,Y是缩放,标准偏差为1,前协方差正规化的回归?这会影响所应用的处罚的意义。在一般情况下,应进行标准化。默认值是TRUE。


值----------Value----------

<table summary="R valueblock"> <tr valign="top"><td>intercepts</td> <td> Returns a matrix of intercepts, of dimension length(lam1s)xlength(lam2s)</td></tr> <tr valign="top"><td>coefficients</td> <td> Returns an array of coefficients, of dimension length(lam1s)xlength(lam2s)xncol(x).</td></tr> <tr valign="top"><td>p1</td> <td> p1 value used</td></tr> <tr valign="top"><td>p2</td> <td> p2 value used</td></tr> <tr valign="top"><td>lam1s</td> <td> lam1s used</td></tr> <tr valign="top"><td>lam2s</td> <td> lam2s used</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> intercepts</ TD> <TD>返回矩阵的拦截,尺寸长度(lam1s)xlength的(lam2s)</ TD> </ TR> <tr valign="top"> <TD> coefficients</ TD> <TD>返回一个数组系数,尺寸长度(lam1s)xlength(lam2s)xncol(X)。 </ TD> </ TR> <tr valign="top"> <TD>p1 </ TD> <TD> P1值</ TD> </ TR> <tr valign="top"> <TD>p2 </ TD> <TD> P2的值</ TD> </ TR> <tr valign="top"> <TD>lam1s </ TD> <TD> lam1s </ TD> </ TR> <tr valign="top"> <TD>lam2s</ TD> <TD> lam2s使用</ TD> </ TR> </ TABLE>


注意----------Note----------

When p1=1 and ncol(x)>500 or so, then Scout can be very slow!! Please use p1=2 when ncol(x) is large.
当P1 = 1和ncol(X)> 500左右,然后Scout可以是很慢的!请使用P1 = 2时,NCOL(x)为大。


(作者)----------Author(s)----------


Daniela M. Witten and Robert Tibshirani



参考文献----------References----------

regression and classification for high-dimensional problems. Journal

参见----------See Also----------

predict.scoutobject, cv.scout
predict.scoutobject,cv.scout


实例----------Examples----------


data(diabetes)
attach(diabetes)
scout.out <- scout(x2,y,p1=2,p2=1)
print(scout.out)
detach(diabetes)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 22:43 , Processed in 0.020583 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表