找回密码
 注册
查看: 356|回复: 0

R语言 saws包 saws()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 22:23:15 | 显示全部楼层 |阅读模式
saws(saws)
saws()所属R语言包:saws

                                        Small sample Adjustments for Wald-type tests using Sandwich estimator of variance
                                         沃尔德型式试验用夹心方差估计的小样本调整

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function takes an object from a regression function and gives confidence intervals and p-values using  the sandwich estimator of variance corrected for small samples.
从回归函数,这个函数接受一个对象使用夹心方差估计量的小样本修正,并给出置信区间和p值。


用法----------Usage----------


saws(x,test = diag(p), beta0 = matrix(0, p, 1),
    conf.level = 0.95, method = c("d3", "d5", "d1", "d2", "d4", "dm"),bound=.75)



参数----------Arguments----------

参数:x
a list containing three elements: coefficients, u, omega (see details)
一个列表,其中包含三个要素:系数,U,欧米茄(见详情)


参数:test
either a numeric vector giving elements of coefficient to test, or an r by p matrix of constants for testing (see details)
无论是数字矢量给元素的系数进行测试,或R p矩阵常数测试(见详情)


参数:beta0
null parameters for testing (see details)
空参数进行测试(见详情)


参数:conf.level
level for confidence intervals
置信区间水平


参数:method
one of "d3", "d5", "d1", "d2", "d4",  or "dm" (see details)
一个“d3上”,“D5”,用“d1”,“d2的”,“d4上”,或“分米”(见详情)


参数:bound
bound for bias correction, denoted b in Fay and Graubard, 2001
偏置校正,表示b在2001年Fay和Graubard,


Details

详细信息----------Details----------

Typically, the x object is created in a specialized function. Currently there are three such functions,  link{lmfitSaws},mgee and clogistCalc. The function lmfitSaws  is a simple linear model function that creates all the output needed. The function mgee is a slight modification of the  gee function that creates the 'u' matrix and the 'omega' array. The 'coefficients' is a vector with p parameter  estimates, and is a standard output from the regression. The matrix 'u' is K by p with u[i,] the ith  estimating equation, where there are K approximately independent estimating equations. The array 'omega' is K by p by p   where omega[i,,] is a p by p matrix estimating - du/dbeta (here beta=coefficients). See Fay and Graubard (2001) for details.
通常情况下,在x对象被创建在一个专门的功能。目前有三个这样的功能,link{lmfitSaws},mgee和clogistCalc。函数lmfitSaws是一个简单的线性的模型函数创建所需的所有输出。函数mgee创建的“U”矩阵“欧米茄”阵列的的啧啧功能,是一个轻微的修改。的“系数”是一个向量与p参数估计,和是一个标准的输出从回归。矩阵U是K p的U [我]的第i个估计方程,其中有K约独立的估计方程。 “欧米茄”阵列由p是K欧米茄[我]是AP p矩阵估计由P  - 杜/ dbeta(β=系数)。有关详细信息,请参阅费伊和Graubard的(2001年)。

Suppose that the coefficient vector from the regression is beta. Then we test r hypotheses, based on the the matrix product, TEST (beta-beta0)=0, where TEST is an  r by p matrix. If the argument 'test' is an r by p matrix (where r is arbitrary), then TEST=test. If 'test' is a vector, then each element of test corresponds to testing that row of beta is 0, i.e., TEST<-diag(p)[test,], where p is the length of the coefficient vector. For example, test<-c(2,5), tests that beta[2]-beta0[2]=0 and that beta[5]-beta0[5]=0.  The alternatives are always two-sided.
假设从回归系数向量是测试版。然后,我们测试R假设,基于上的矩阵乘积,试验(β-beta0)= 0,其中TEST是由p矩阵的r。如果“测试”的说法是一个r p矩阵(其中r是任意的),然后测试测试。如果测试是一个矢量,那么测试的每个元素对应于测试的β该行是0,即,试验<诊断(对)[试验],其中p是系数向量的长度。例如,测试<-C(2,5),测试,β[2]-beta0 [2] = 0,并且测试[5〕beta0 [5] = 0。总是双面的替代品。

There are several methods available. They are all discussed in Fay and Graubard (2001). The naming of the  methods follows that paper (see for example Table 1, where deltam corresponds to dm, etc.):
有几种方法可用。他们都在费伊和Graubard的(2001)讨论。的命名方法如下文件(如表1,其中deltam对应DM等):




dm the usual model based method which does not use the sandwich, uses a chi squared distribution
DM的一般模型为基础的方法,不使用三明治,采用了卡方分布




d1 the standard sandwich method which makes no corrections for small samples
D1标准夹心法不改正的小样本




d2 sandwich method, no bias correction, uses F distribution with df=dhat (see paper)
D2夹心法,无偏置校正,使用F分布与df =黄日波(见本文)




d3 (default method:sandwich method, no bias correction, uses F distribution with df=dtilde (see paper)
D3(默认方法:夹心法,无偏置校正,使用F分布与df = dtilde(见本文)




d4 sandwich method, with bias correction, uses F distribution with df=dhatH (see paper)
D4夹心法,偏置校正,使用F分布用df = dhatH的(见本文)




d5 sandwich method, with bias correction, uses F distribution with df=dtildeH (see paper)
D5夹心法,偏置校正,使用F分布用df = dtildeH的(见本文)


值----------Value----------

An object of class 'saws'. A list with elements:
对象类“锯”。元素列表:


参数:originalCall
call from the original object
要求从原来的对象


参数:method
method used (see details)
使用的方法(见详情)


参数:test
test matrix (see details)
测试矩阵(见详情)


参数:beta0
beta0 vector (see details)
beta0矢量(见详情)


参数:coefficients
estimated coefficients
估计系数


参数:df
a vector of estimated degrees of freedom. This will have as many elements as there are coefficients
一个向量的估计自由度。这将有一样多的元素的系数


参数:V
variance-covariance matrix
方差 - 协方差矩阵


参数:se
vector of standard errors of the coefficients
的矢量的系数的标准误差


参数:t.value
a vector of t-values: test (coef - beta0)/se  
一个向量的t值的测试(系数 -  beta0)/ SE


参数:p.value
a vector of two-sided p-values
双面的p-值的矢量的


参数:conf.int
p by 2 matrix of confidence intervals  
p通过2矩阵的置信区间


(作者)----------Author(s)----------


M.P. Fay



参考文献----------References----------



参见----------See Also----------

For examples, see mgee and clogistCalc. See also print.saws
有关示例,请参阅mgee和clogistCalc。 print.saws

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 16:24 , Processed in 0.022383 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表